1Electric Power Dispatching & Control Center of Guangdong Power Grid, Guangzhou 510600, China
2Guangdong Provincial Key Laboratory of Smart Grid New Technology Enterprises, China Southern Power Grid Technology Co.,Ltd., Guangzhou 510180, China
BibTex Citation Data :
@article{IJRED59988, author = {Zhiwen Yu and Wenjie Zheng and Kaiwen Zeng and Ruifeng Zhao and Yanxu Zhang and Mengdi Zeng}, title = {Energy optimization management of microgrid using improved soft actor-critic algorithm}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {2}, year = {2024}, keywords = {Energy optimization management; Electricity rate; Microgrid; Reinforcement learning; Soft actor-critic algorithm}, abstract = { To tackle the challenges associated with variability and uncertainty in distributed power generation, as well as the complexities of solving high-dimensional energy management mathematical models in mi-crogrid energy optimization, a microgrid energy optimization management method is proposed based on an improved soft actor-critic algorithm. In the proposed method, the improved soft actor-critic algorithm employs an entropy-based objective function to encourage target exploration without assigning signifi-cantly higher probabilities to any part of the action space, which can simplify the analysis process of distributed power generation variability and uncertainty while effectively mitigating the convergence fragility issues in solving the high-dimensional mathematical model of microgrid energy management. The effectiveness of the proposed method is validated through a case study analysis of microgrid energy op-timization management. The results revealed an increase of 51.20%, 52.38%, 13.43%, 16.50%, 58.26%, and 36.33% in the total profits of a microgrid compared with the Deep Q-network algorithm, the state-action-reward-state-action algorithm, the proximal policy optimization algorithm, the ant-colony based algorithm, a microgrid energy optimization management strategy based on the genetic algorithm and the fuzzy inference system, and the theoretical retailer stragety, respectively. Additionally, com-pared with other methods and strategies, the proposed method can learn more optimal microgrid energy management behaviors and anticipate fluctuations in electricity prices and demand. }, pages = {329--339} doi = {10.61435/ijred.2024.59988}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/59988} }
Refworks Citation Data :
To tackle the challenges associated with variability and uncertainty in distributed power generation, as well as the complexities of solving high-dimensional energy management mathematical models in mi-crogrid energy optimization, a microgrid energy optimization management method is proposed based on an improved soft actor-critic algorithm. In the proposed method, the improved soft actor-critic algorithm employs an entropy-based objective function to encourage target exploration without assigning signifi-cantly higher probabilities to any part of the action space, which can simplify the analysis process of distributed power generation variability and uncertainty while effectively mitigating the convergence fragility issues in solving the high-dimensional mathematical model of microgrid energy management. The effectiveness of the proposed method is validated through a case study analysis of microgrid energy op-timization management. The results revealed an increase of 51.20%, 52.38%, 13.43%, 16.50%, 58.26%, and 36.33% in the total profits of a microgrid compared with the Deep Q-network algorithm, the state-action-reward-state-action algorithm, the proximal policy optimization algorithm, the ant-colony based algorithm, a microgrid energy optimization management strategy based on the genetic algorithm and the fuzzy inference system, and the theoretical retailer stragety, respectively. Additionally, com-pared with other methods and strategies, the proposed method can learn more optimal microgrid energy management behaviors and anticipate fluctuations in electricity prices and demand.
Article Metrics:
Last update:
Last update: 2024-11-03 20:54:18
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.