skip to main content

Effect of ultrasound-advanced oxidation processes for pretreatment of oil palm mesocarp fiber for cellulose extraction

1Department of Chemical Engineering, Diponegoro University, Indonesia

2Department of Chemistry, Universitas Islam Negeri Walisongo, Semarang, Indonesia

Received: 22 Dec 2023; Revised: 26 Mar 2024; Accepted: 10 Apr 2024; Available online: 22 Apr 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Palm mesocarp fiber, a by-product of the palm oil industry, holds significant potential as a cellulose source for biofuel, biopolymer, and biocomposite production. However, its utilization is hampered due to the presence of lignin, which covers the cellulose. The use of ozone promotes a high level of lignin degradation, making it efficient in breaking down lignin bonds in lignocellulose. However, the ozonation method has low ozone mass transfer. This deficiency can be overcome with ultrasonic waves because of the cavitation phenomenon that can expand the contact surface of ozone and lignocellulose. The ozonation-ultrasonic hybrid method is used to remove lignin. This research investigates the use of a hybrid ozonation-ultrasonic method with the effect of reaction time and pH under acidic conditions on the pretreatment of palm oil mesocarp fiber. This process was carried out at reaction times (70, 80, and 90 minutes) and solution pH (4, 5, and 6) with an ozone flow rate of 2 L min-1. The cellulose content was analyzed using the Chesson method. The results showed a decrease in lignin and an increase in cellulose, which was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis shows a decrease in the lignin absorption peak at 1635 cm-1 and 1420 cm-1. XRD analysis showed an increase in crystallinity after pretreatment, with lignin degradation observed at 6.35%. SEM Morphological showed a more friable, stable, and porous surface after pretreatment, indicating the presence of perforations in the cell walls and the damage to the lignin structure. Therefore, this research succeeded in reducing the use of chemicals in the biomass waste delignification process. The ozonation-ultrasonic hybrid pretreatment process, which aims to degrade lignin in palm fiber biomass, shows promising results, producing high cellulose content in palm fiber by reducing the amount of chemicals as mostly used in conventional processes.
Fulltext View|Download
Keywords: Oil Palm Fiber; Lignin; Cellulose; Ozonation; Ultrasonic
Funding: Diponegoro University under contract 118-28/UN7.6.1/PP/2021

Article Metrics:

  1. Abdullah, A., Hamid, H., Christwardana, M., & Hadiyanto, H. (2018). Optimization of Cellulase Production by Aspergillus niger ITBCC L74 with Bagasse as Substrate using Response Surface Methodology. HAYATI Journal of Biosciences, 25(3), 115. https://doi.org/10.4308/hjb.25.3.115
  2. Anggoro, D. D., Dewi, I. K., & Prasetyaningrum, L. B. A. (2023). Parametric Optimization Of Oil Palm Mesocarp Fiber Valorization With Hybrid Ozonation-Ultrasonic Pretreatment Method. Iium Engineering Journal, 24(2), 45–66. https://doi.org/10.31436/iiumej.v24i2.2717
  3. Anggoro, D.D, Buchori, L., Kusuma Dewi, I., & Prasetyaningrum, A. (2022). The Effect Of Ozonation, Ultrasonic, And Hybrid Ozonation-Ultrasonic Pretreatment Methods On The Delignification Of Oil Palm Mesocarp Fibers. International Journal of Advanced Research, 10(12), 194–204. https://doi.org/10.21474/IJAR01/15827
  4. Asyraf, M. R. M., Ishak, M. R., Syamsir, A., Nurazzi, N. M., Sabaruddin, F. A., Shazleen, S. S., Norrrahim, M. N. F., Rafidah, M., Ilyas, R. A., Rashid, M. Z. A., & Razman, M. R. (2022). Mechanical properties of oil palm fibre-reinforced polymer composites: a review. In Journal of Materials Research and Technology, 17, 33–65. https://doi.org/10.1016/j.jmrt.2021.12.122
  5. Boczkaj, G., Gągol, M., Klein, M., & Przyjazny, A. (2018). Effective method of treatment of effluents from production of bitumens under basic pH conditions using hydrodynamic cavitation aided by external oxidants. Ultrasonics Sonochemistry, 40(August 2017), 969–979. https://doi.org/10.1016/j.ultsonch.2017.08.032
  6. Fuertez-Córdoba, J. M., Acosta-Pavas, J. C., & Ruiz-Colorado, Á. A. (2021). Alkaline delignification of lignocellulosic biomass for the production of fermentable sugar syrups. DYNA (Colombia), 88(218), 168–177. https://doi.org/10.15446/dyna.v88n218.92055
  7. Galdeano, M. C., Wilhelm, A. E., Goulart, I. B., Tonon, R. V., Freitas-Silva, O., Germani, R., & Chávez, D. W. H. (2018). Effect of water temperature and pH on the concentration and time of ozone saturation. Brazilian Journal of Food Technology, 21. https://doi.org/10.1590/1981-6723.15617
  8. Hirahara, Y., Iwata, K., & Nakamuro, K. (2019). Effect of Citric Acid on Prolonging the Half-life of Dissolved Ozone in Water. Food Safety, 7(4), 90–94. https://doi.org/10.14252/foodsafetyfscj.d-19-00005
  9. Ikhwanul Adha, M., & Dewi, R. (2022). Jurnal Iptek Media Komunikasi Teknologi Experimental Study Of Cellulose Extraction From Oil Palm Empty Fruits Bunches. Jurnal IPTEK, 26(1). https://doi.org/10.31284/j.iptek.2022.v26i1.2
  10. Kıdak, R., & Doğan, Ş. (2018). Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water. Ultrasonics Sonochemistry, 40, 131–139. https://doi.org/10.1016/j.ultsonch.2017.01.033
  11. Kong, S. H., Loh, S. K., Bachmann, R. T., Rahim, S. A., & Salimon, J. (2014). Biochar from oil palm biomass: A review of its potential and challenges. Renewable and Sustainable Energy Reviews, 39, 729–739. https://doi.org/10.1016/J.RSER.2014.07.107
  12. Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. In Bioresources and Bioprocessing, 4(1).. https://doi.org/10.1186/s40643-017-0137-9
  13. Kumari, D., & Singh, R. (2018). Pretreatment of lignocellulosic wastes for biofuel production : A critical review. Renewable and Sustainable Energy Reviews, 90(March), 877–891. https://doi.org/10.1016/j.rser.2018.03.111
  14. Kurniawan, E. W. (2020). Proses Optimasi Produksi Bioetanol dari Limbah Serat Buah Sawit dengan Metode SHF. Buletin Loupe, 16(01), 60–67. https://doi.org/10.51967/buletinloupe.v16i01.77
  15. Laghari, S. M., Hasnain Isa, M., & Jabbar Laghari, A. (2016). Delignification Of Palm Fiber By Microwave Assisted Chemical Pretreatment For Improving Energy Efficiency. In Malaysian Journal of Science 35(1), 8-14. https://doi.org/10.22452/mjs.vol35no1.2
  16. Lee, K. M., Quek, J. D., Tey, W. Y., Lim, S., Kang, H. S., Quen, L. K., Mahmood, W. A. W., Jamaludin, S. I. S., Teng, K. H., & Khoo, K. S. (2022). Biomass valorization by integrating ultrasonication and deep eutectic solvents: Delignification, cellulose digestibility and solvent reuse. Biochemical Engineering Journal, 187. https://doi.org/10.1016/j.bej.2022.108587
  17. Lismeri, L., Zari, P. M., Novarani, T., & Darni, Y. (2016). Sintesis Selulosa Asetat dari Limbah Batang Ubi Kayu. Jurnal Rekayasa Kimia & Lingkungan, 11(2), 82. https://doi.org/10.23955/rkl.v11i2.5407
  18. Maqsood, H. S., Bashir, U., Wiener, J., Puchalski, M., Sztajnowski, S., & Militky, J. (2017). Ozone treatment of jute fibers. Cellulose, 24(3), 1543–1553. https://doi.org/10.1007/s10570-016-1164-y
  19. Ni’mah, L., Ardiyanto, A., & Zainuddin, M. (2015). Pembuatan Bioetanol Dari Limbah Serat Kelapa Sawit Melalui Proses Pretreatment, Hidrolisis Asam Dan Fermentasi Menggunakan Ragi Tape. INFOTEKNIK: Jurnal Keilmuan dan Aplikasi Teknik,16(2), 227-242. http://dx.doi.org/10.20527/infotek.v16i2.206
  20. Nordin, N. I. A. A., Ariffin, H., Andou, Y., Hassan, M. A., Shirai, Y., Nishida, H., Yunus, W. M. Z. W., Karuppuchamy, S., & Ibrahim, N. A. (2013). Modification of oil palm mesocarp fiber characteristics using superheated steam treatment. Molecules, 18(8), 9132–9146. https://doi.org/10.3390/molecules18089132
  21. Omar, W.N.N. and Amin, N.A.S. (2016). Multi Response Optimization of Oil Palm Frond Pretreatment By Ozonolysis. Industrial Crops and Products, 85, 389–402. https://doi.org/10.1016/j.indcrop.2016.01.027
  22. Palomares-Reyna, D., Carrera-Crespo, J. E., Sosa-Rodríguez, F. S., García-Pérez, U. M., Fuentes-Camargo, I., Lartundo-Rojas, L., & Vazquez-Arenas, J. (2022). Photo-electrochemical and ozonation process to degrade ciprofloxacin in synthetic municipal wastewater, using C, N-codoped TiO2with high visible-light absorption. Journal of Environmental Chemical Engineering, 10(3). https://doi.org/10.1016/j.jece.2022.107380
  23. Pratama, J. H., Rohmah, R. L., Amalia, A., & Saraswati, T. E. (2019). Isolasi Mikroselulosa dari Limbah Eceng Gondok (Eichornia crassipes) dengan Metode Bleaching-Alkalinasi. ALCHEMY Jurnal Penelitian Kimia, 15(2), 239. https://doi.org/10.20961/alchemy.15.2.30862.239-250
  24. Pratiwi, W.Z., Hadiyanto, H., Widayat, W. (2024). Response surface optimization of UV/H2O2-based photo-oxidative degradation of amoxicillin. Results in Engineering, 21, 101836, https://doi.org/10.1016/j.rineng.2024.101836
  25. Rahayu, A., Hanum, F. F., Amrillah, N. A. Z., Lim, L. W., & Salamah, S. (2022). Cellulose Extraction from Coconut Coir with Alkaline Delignification Process. Journal of Fibers and Polymer Composites, 1(2), 106–116. https://doi.org/10.55043/jfpc.v1i2.51
  26. Rekhate, C. V., & Srivastava, J. K. (2020). Recent advances in ozone-based advanced oxidation processes for treatment of wastewater- A review. In Chemical Engineering Journal Advances, 3. https://doi.org/10.1016/j.ceja.2020.100031
  27. Rita Nurjannah, N., Sudiarti, T., Lena Rahmidar, D., Kimia, J., Sains dan Teknologi, F., & Sunana Gunung Djati Bandung, U. (2019). Sintesis Dan Karakterisasi Selulosa Termetilasi Sebagai Biokomposit Hidrogel. Al Kimiya: Jurnal Ilmu Kimia dan Terapan, 7 (1), 19-27. https://doi.org/10.15575/ak.v7i1.6490
  28. Rosdiana, R., Apriyanto, E., Santika, A. (2021). Potensi serat limbah buah sawit sebagai media tanam untuk pertumbuhan dan produksi tanaman pakcoy (Barassica rapa L.). Jurnal agrosains dan teknologi, 6(2). https://jurnal.umj.ac.id/index.php/ftan/article/download/9971/6361
  29. Saka, M., Munusamy, M., Shibata, Y., Tono, & Miyafuji, H. (2008). Chemical constituents of the different anatomical parts of the oil palm (Elaeis guineensis) for theis sustainable utilization. Natural Resources and Energy Environtment, JSPS-VCC Program on Environmental Science, Engineering and Ethics (Group IX), 19–34
  30. Salimi, Y. K., Hasan, A. S., & Botutihe, D. N. (2021). Sintesis dan Karakterisasi Carboxymethyl Cellulose Sodium (Na-CMC) dari Selulosa Eceng Gondok (Eichhornia crassipes) dengan Media Reaksi Etanol-Isobutanol. Jambura Journal of Chemistry, 3(1), 1–11. https://doi.org/10.34312/jambchem.v3i1.9288
  31. Shen, Y., Xu, Q., Wei, R., Ma, J., & Wang, Y. (2017). Mechanism and dynamic study of reactive red X-3B dye degradation by ultrasonic-assisted ozone oxidation process. Ultrasonics Sonochemistry, 38, 681–692. https://doi.org/10.1016/j.ultsonch.2016.08.006
  32. Taharuddin, T., Iryani, D. A., & Eka Wahyu, M. (2018). Influence of Oil Content on Solution Load Ethanol-Soda Delignification of Oil Palm Mesocarp Fiber. Jurnal Rekayasa Kimia & Lingkungan, 13(2), 200–208. https://doi.org/10.23955/rkl.v13i2.11145
  33. Travaini, R., Otero, M. D. M., Coca, M., Da-Silva, R., & Bolado, S. (2013). Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332–339. https://doi.org/10.1016/j.biortech.2013.01.133
  34. Wu, J., Upreti, S., & Ein-Mozaffari, F. (2013). Ozone pretreatment of wheat straw for enhanced biohydrogen production. International Journal of Hydrogen Energy, 38(25), 10270–10276. https://doi.org/10.1016/j.ijhydene.2013.06.063
  35. Xiong, X., Wang, B., Zhu, W., Tian, K., & Zhang, H. (2019). A review on ultrasonic catalytic microbubbles ozonation processes: Properties, hydroxyl radicals generation pathway and potential in application. In Catalysts, 9,(1). https://doi.org/10.3390/catal9010010
  36. Yasim-Anuar, T. A. T., Ariffin, H., Norrrahim, M. N. F., & Hassan, M. A. (2017). Factors affecting spinnability of oil palm mesocarp fiber cellulose solution for the production of microfiber. BioResources, 12(1), 715–734. https://doi.org/10.15376/biores.12.1.715-734

Last update:

No citation recorded.

Last update: 2024-10-03 14:01:02

No citation recorded.