1School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, China
2International Joint Laboratory of Integrated Energy Equipment and Integration in Jiangsu Province, Nanjing, China
3State Grid Jiangsu Electric Vehicle Service Co., China
BibTex Citation Data :
@article{IJRED60053, author = {Changlong Teng and Zhenya Ji and Peng Yan and Zheng Wang and Xianglei Ye}, title = {Orderly charging strategy for electric vehicles based on multi-level adjustability}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {2}, year = {2024}, keywords = {Electric vehicles; Orderly charging; Multi-level adjustable charging}, abstract = { The development of electric vehicles (EVs) is one of the essential ways to reduce environmental pollution. With the rapid growth in EVs, an orderly charging strategy based on multi-level adjustable charging power is proposed to address the problem of increasing peak-to-valley difference due to disorderly charging in different scenarios. Based on the information of multi-level adjustable charging power, information about staying in the residential area, and charging demands of EVs, this research designs a centralized charging mode with complete information under the centralized scenario and a decentralized charging mode with incomplete information under the decentralized scenario. This research takes the minimization of peak-to-valley difference in the residential area as the objective function and considers that the charging pile can have the function of multi-level adjustable charging power to support these two scenarios. Two charging modes of the charging pile are designed, and orderly charging model of EVs in the residential area is constructed. EVs can select charging time and charging power by using Bluetooth or code scanning in the charging pile. This research aims to design two orderly charging modes to effectively implement peak shaving and valley filling while ensuring the charging demand of EVs. This research uses the CPLEX solver in MATLAB to solve the objective. The simulation results show that EVs can reasonably select the multi-level adjustable charging power under different scenarios and provide a reference for engineering related to orderly charging. Strategy 4, proposed in this research, has the lowest peak-to-valley difference of the four strategies. The peak-to-valley difference is only 87 kW under the centralized scenario, and the peak-to-valley difference is 282 kW under the decentralized scenario. }, pages = {245--255} doi = {10.61435/ijred.2024.60053}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60053} }
Refworks Citation Data :
The development of electric vehicles (EVs) is one of the essential ways to reduce environmental pollution. With the rapid growth in EVs, an orderly charging strategy based on multi-level adjustable charging power is proposed to address the problem of increasing peak-to-valley difference due to disorderly charging in different scenarios. Based on the information of multi-level adjustable charging power, information about staying in the residential area, and charging demands of EVs, this research designs a centralized charging mode with complete information under the centralized scenario and a decentralized charging mode with incomplete information under the decentralized scenario. This research takes the minimization of peak-to-valley difference in the residential area as the objective function and considers that the charging pile can have the function of multi-level adjustable charging power to support these two scenarios. Two charging modes of the charging pile are designed, and orderly charging model of EVs in the residential area is constructed. EVs can select charging time and charging power by using Bluetooth or code scanning in the charging pile. This research aims to design two orderly charging modes to effectively implement peak shaving and valley filling while ensuring the charging demand of EVs. This research uses the CPLEX solver in MATLAB to solve the objective. The simulation results show that EVs can reasonably select the multi-level adjustable charging power under different scenarios and provide a reference for engineering related to orderly charging. Strategy 4, proposed in this research, has the lowest peak-to-valley difference of the four strategies. The peak-to-valley difference is only 87 kW under the centralized scenario, and the peak-to-valley difference is 282 kW under the decentralized scenario.
Article Metrics:
Last update:
Last update: 2024-11-02 21:29:21
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.