skip to main content

Performance of sulfided NiMo catalyst supported on pillared bentonite Al and Ti under hydrodeoxygenation reaction of guaiacol

1Research Center for Chemistry, National Research and Innovation Agency, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sains, Malang State University, Indonesia

Received: 8 Jan 2024; Revised: 28 Mar 2024; Accepted: 16 Apr 2024; Available online: 24 Apr 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Bio-crude oil is known to be sustainable, eco-environmentally, and an alternative energy source produced by biomass pyrolysis. However, its quality remains relatively low due to a higher oxygen concentration compared to liquid fuels from fossils. Therefore, an upgrading process is necessary through the catalytic hydrodeoxygenation (HDO) process. This work synthesized pillared bentonite using Al and Ti metals as the pillaring agent to produce Al-PILC and Ti-PILC as catalyst support for sulfided NiMo. Their catalytic activity in HDO reaction using guaiacol as a model compound of bio-crude oil were also evaluated. Characterization of the bentonite-pillared materials, including Al-PILC, Mo/Al-PILC, NiMo/Al-PILC, Ti-PILC, Mo/Ti-PILC, and NiMo/Ti-PILC, was performed using Surface Area Analyzer, X-ray Diffractometer (XRD), Temperature-Programmed Desorption of ammonia (NH3-TPD), X-Ray Fluorescence (XRF), and Scanning Electron Microscope (SEM) techniques. The characterization results confirm the pillarization process of bentonite using Al and Ti metals as the pillaring agent, and the preparation of the NiMo catalyst using the stepwise impregnation method was successfully prepared. The NiMo/Ti-PILC catalyst performs a superior conversion value on the HDO guaiacol reaction than other catalysts. A well dispersion of Mo and Ni metals on the surface support (NiMo/Ti-PILC), thus creating numerous active sites of the catalyst after the sulfidation. Variations in time and temperature during the HDO guaiacol reaction significantly affected the conversion.
Fulltext View|Download
Keywords: bentonite; pillarization; Ni-Mo catalyst; hydrodeoxygenation; guaiacol
Funding: National Research and Innovation Agency, Indonesia

Article Metrics:

  1. Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass Conversion Technologies. In Greenhouse Gases Balances of Bioenergy Systems (pp. 107–139). Elsevier. https://doi.org/10.1016/B978-0-08-101036-5.00008-2
  2. Adilina, I. B., Rinaldi, N., Simanungkalit, S. P., Aulia, F., Oemry, F., Stenning, G. B. G., Silverwood, I. P., & Parker, S. F. (2019). Hydrodeoxygenation of Guaiacol as a Bio-Oil Model Compound over Pillared Clay-Supported Nickel–Molybdenum Catalysts. The Journal of Physical Chemistry C, 123(35), 21429–21439. https://doi.org/10.1021/acs.jpcc.9b01890
  3. Amaya, J., Bobadilla, L., Azancot, L., Centeno, M., Moreno, S., & Molina, R. (2020). Potentialization of bentonite properties as support in acid catalysts. Materials Research Bulletin, 123, 110728. https://doi.org/10.1016/j.materresbull.2019.110728
  4. Annisa, G. (2012). Hydrodeoxygenation of bio-oilUsing CoMo/C catalyst for optimizing alkane dan alcohol production [Thesis, Universitas Indonesia]. https://lib.ui.ac.id/detail?id=20313952
  5. Binitha, N. N., & Sugunan, S. (2006). Preparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous and Mesoporous Materials, 93(1–3), 82–89. https://doi.org/10.1016/j.micromeso.2006.02.005
  6. Bu, Q., Lei, H., Zacher, A. H., Wang, L., Ren, S., Liang, J., Wei, Y., Liu, Y., Tang, J., Zhang, Q., & Ruan, R. (2012). A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis. Bioresource Technology, 124, 470–477. https://doi.org/10.1016/j.biortech.2012.08.089
  7. Campbell, I. M. (1988). Catalysis at Surfaces (First Edit). Chapman and Hall
  8. de Miguel Mercader, F., Groeneveld, M. J., Kersten, S. R. A., Geantet, C., Toussaint, G., Way, N. W. J., Schaverien, C. J., & Hogendoorn, K. J. A. (2011). Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy & Environmental Science, 4(3), 985. https://doi.org/10.1039/c0ee00523a
  9. Furimsky, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199(2), 147–190. https://doi.org/10.1016/S0926-860X(99)00555-4
  10. Gutierrez, A., Kaila, R. K., Honkela, M. L., Slioor, R., & Krause, A. O. I. (2009). Hydrodeoxygenation of guaiacol on noble metal catalysts. Catalysis Today, 147(3–4), 239–246. https://doi.org/10.1016/j.cattod.2008.10.037
  11. Haerudin, H., Rinaldi, N., & Fisli, A. (2010). Characterizatio of modified bentonite using aluminium polycation. Indonesian Journal of Chemistry, 2(3), 173–176. https://doi.org/10.22146/ijc.21913
  12. Huang, J., Li, X., Wu, D., Tong, H., & Li, W. (2013). Theoretical studies on pyrolysis mechanism of guaiacol as lignin model compound. Journal of Renewable and Sustainable Energy, 5(4). https://doi.org/10.1063/1.4816497
  13. Ishii, T., & Kyotani, T. (2016). Temperature Programmed Desorption. In Materials Science and Engineering of Carbon (pp. 287–305). Elsevier. https://doi.org/10.1016/B978-0-12-805256-3.00014-3
  14. Kabe, T., Ishihara, A., Qian, W. (1999). Hydrodesulfurization and Hydrodenitrogenation. Kodansha and Wiley-VCH
  15. Kar, Y. (2018). Catalytic cracking of pyrolytic oil by using bentonite clay for green liquid hydrocarbon fuels production. Biomass and Bioenergy, 119, 473–479. https://doi.org/10.1016/j.biombioe.2018.10.014
  16. Khairina, N. N. L., Kristiani, A., Widjaya, R. R., Agustian, E., Dwiatmoko, A. A., & Rinaldi, N. (2022). Conversion of fatty acid into biodiesel using solid catalysts of Ti-Zr and Ti-Cr pillared bentonite. AIP Conference Proceedings, 2493(1), 060017. https://doi.org/10.1063/5.0110942
  17. Kou, M. R. S. (2000). Evaluation of the Acidity of Pillared Montmorillonites by Pyridine Adsorption. Clays and Clay Minerals, 48(5), 528–536. https://doi.org/10.1346/CCMN.2000.0480505
  18. Kubička, D., & Kaluža, L. (2010). Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Applied Catalysis A: General, 372(2), 199–208. https://doi.org/10.1016/j.apcata.2009.10.034
  19. Lee, C. R., Yoon, J. S., Suh, Y.-W., Choi, J.-W., Ha, J.-M., Suh, D. J., & Park, Y.-K. (2012). Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catalysis Communications, 17, 54–58. https://doi.org/10.1016/j.catcom.2011.10.011
  20. Liu, K. (2016). Catalytic hydrodeoxygenation of bio-oil and model compounds [Imperial College London]. http://hdl.handle.net/10044/1/51555
  21. Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels, 20(3), 848–889. https://doi.org/10.1021/ef0502397
  22. Mora-Vergara, I. D., Hernández Moscoso, L., Gaigneaux, E. M., Giraldo, S. A., & Baldovino-Medrano, V. G. (2018). Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium. Catalysis Today, 302, 125–135. https://doi.org/10.1016/j.cattod.2017.07.015
  23. Mortensen, P. M., Grunwaldt, J.-D., Jensen, P. A., Knudsen, K. G., & Jensen, A. D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, 407(1–2), 1–19. https://doi.org/10.1016/j.apcata.2011.08.046
  24. Niemantsverdriet, J. W. (2007). Spectroscopy in Catalysis. Wiley. https://doi.org/10.1002/9783527611348
  25. Nugrahaningtyas, K. D., Hidayat, Y., & Prayekti, P. S. (2015). Aktivitas dan selektivitas katalis Mo-Co/USY pada reaksi hidrodeoksigenasi anisol. Jurnal Penelitian Saintek, 20(1). https://doi.org/10.21831/jps.v20i1.5609
  26. Okamoto, Y., Umeno, S., Arima, Y., Nakai, K., Takahashi, T., Uchikawa, K., Inamura, K., Akai, Y., Chiyoda, O., Katada, N., Shishido, T., Hideshi Hattori, Hasegawa, S., Yoshida, H., Segawa, K., Koizumi, N., Yamada, M., Nishijima, A., Kabe, T., … Uchijima, T. (1998). A study on the preparation of supported metal oxide catalysts using JRC-reference catalysts. I. Preparation of a molybdena–alumina catalyst. Part 3. Drying process. Applied Catalysis A: General, 170(2), 343–357. https://doi.org/10.1016/S0926-860X(98)00066-0
  27. Parangi, T., & Mishra, M. K. (2020). Solid Acid Catalysts for Biodiesel Production. Comments on Inorganic Chemistry, 40(4), 176–216. https://doi.org/10.1080/02603594.2020.1755273
  28. Peng, S.-Y., Xu, Z.-N., Chen, Q.-S., Wang, Z.-Q., Chen, Y., Lv, D.-M., Lu, G., & Guo, G.-C. (2014). MgO: an excellent catalyst support for CO oxidative coupling to dimethyl oxalate. Catal. Sci. Technol., 4(7), 1925–1930. https://doi.org/10.1039/C4CY00245H
  29. Rinaldi, N., Purba, N. D. E., Kristiani, A., Agustian, E., Widjaya, R. R., & Dwiatmoko, A. A. (2023). Bentonite pillarization using sonication in a solid acid catalyst preparation for the oleic acid esterification reaction. Catalysis Communications, 174, 106598. https://doi.org/10.1016/j.catcom.2022.106598
  30. Rinaldi, N., Simanungkalit, S. P., & Kristiani, A. (2017). Hydrodeoxygenation of bio-oil using different mesoporous supports of NiMo catalysts. AIP Conference Proceedings,1904(1),020078. https://doi.org/10.1063/1.5011935
  31. Rivoira, L., Martínez, M. L., & Beltramone, A. (2021). Hydrodeoxygenation of guaiacol over Pt-Ga-mesoporous catalysts. Microporous and Mesoporous Materials, 312, 110815. https://doi.org/10.1016/j.micromeso.2020.110815
  32. Romero, Y., Richard, F., & Brunet, S. (2010). Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: Promoting effect and reaction mechanism. Applied Catalysis B: Environmental, 98(3–4), 213–223. https://doi.org/10.1016/j.apcatb.2010.05.031
  33. Salerno, P., Mendioroz, S., & López Agudo, A. (2004). Al-pillared montmorillonite-based NiMo catalysts for HDS and HDN of gas oil: influence of the method and order of Mo and Ni impregnation. Applied Catalysis A: General, 259(1), 17–28. https://doi.org/10.1016/j.apcata.2003.09.019
  34. Şenol, O. İ., Viljava, T.-R., & Krause, A. O. I. (2005). Hydrodeoxygenation of aliphatic esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalyst: The effect of water. Catalysis Today, 106(1–4), 186–189. https://doi.org/10.1016/j.cattod.2005.07.129
  35. Sing, K. S. W. (1982). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure and Applied Chemistry, 54(11), 2201–2218. https://doi.org/10.1351/pac198254112201
  36. Smart, L. E., Moore, L. E., Smart, L. E., & Moore, E. A. (2005). Solid State Chemistry. CRC Press. https://doi.org/10.1201/b12396
  37. Sumarlan, I., Fatimah, I., & Wijaya, K. (2017). Sintesis dan karakterisasi fotokatalis TiO2 Montmorilant terpilar alumina. Jurnal Pijar Mipa, 11(2). https://doi.org/10.29303/jpm.v11i2.108
  38. Susanto, B. H., Prakasa, M. B., & Shahab, M. H. (2017). Preparation and Characterization of NiMo/C Using Rapid Heating and Cooling Method for Renewable Diesel Synthesis from Nyamplung Oil (Calophyllum Inophyllum Oil). INSIST, 2(1), 42. https://doi.org/10.23960/ins.v2i1.32
  39. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
  40. Topsøe, H.; Clausen, B.S.; Massoth, F. E. (1996). Hydrotreating Catalysis -Science and Technology (Anderson,). Springer
  41. Ulfah, M., & Subagjo, S. (2012). Pengaruh perbedaan sifat penyangga alumina terhadap sifat katalis hydrotreating berbasis nikel-molibdenum. Reaktor, 14(2), 151. https://doi.org/10.14710/reaktor.14.2.151-157
  42. Widjaya, R. R. (2012). Bentonit Cr-Pillared and Zeolite HZSM-5 Catalysts For Conversion Process Ethanol to be Biogasoline [Universitas Indonesia]. https://lib.ui.ac.id/detail.jsp?id=20308024
  43. Xu, Y., Wang, T., Ma, L., Zhang, Q., & Liang, W. (2010). Upgrading of the liquid fuel from fast pyrolysis of biomass over MoNi/γ-Al2O3 catalysts. Applied Energy, 87(9), 2886–2891. https://doi.org/10.1016/j.apenergy.2009.10.028
  44. Zhu, X., Cho, H., Pasupong, M., & Regalbuto, J. R. (2013). Charge-Enhanced Dry Impregnation: A Simple Way to Improve the Preparation of Supported Metal Catalysts. ACS Catalysis, 3(4), 625–630. https://doi.org/10.1021/cs3008347

Last update:

No citation recorded.

Last update: 2024-05-17 19:53:25

No citation recorded.