skip to main content

An innovative air-cooling system for efficiency improvement of retrofitted rooftop photovoltaic module using cross-flow fan

1Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

2Advanced Lightning, Power and Energy Research (ALPER) Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

3Electrical and Electronics Department, German Malaysian Institute, Jalan Ilmiah, Taman Universiti, 43000 Kajang, Selangor Darul Ehsan, Malaysia

Received: 23 Oct 2023; Revised: 17 Jan 2024; Accepted: 5 Feb 2024; Available online: 16 Feb 2024; Published: 1 Mar 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study presents an innovative air-cooling photovoltaic (PV)system using cross-flow fan with speed regulation to optimize performance of rooftop PVsystem in tropical climates like Malaysia. Air passed through the impeller enters perpendicularly to the motor shaft, deflected by the fan blades and evacuated, allowing the fan to operate at its most efficient operating point. The airflow provided within the rear of the PV modules and the roof surface blow out the trapped hot air. Changes in the  module temperature (Tcell) are detected and the fan speed are adjusted accordingly to the PWM. This method was tested for 12 hours continuously from 7:00 am on the existing PV system at German Malaysian Institute (GMI) Bangi. The highest Tcell achieved 72.88 °C and 55.75°C without and with air-cooling system with average power 210.22 W and 246.67 W per peak sun factor (PSF) respectively. There was a 17.34% increase in average power with a 13.18% in average net output power and achieved 6.68% energy efficiency using the proposed cooling system. Tcell increases more swiftly and reaches higher temperatures in the absence of a cooling system, whereas Tcell increases more slowly and at lower temperatures when a cooling system is present. The projected system's power rating was 6.48 W, which is 2.6% per PV module, and it really attained 6.32 W, which is 2.53% per PV module, while total energy consumption by the fan was 51.89 Wh per day, which is only 3.89% per PV module.

Fulltext View|Download
Keywords: uniform air-cooling; cross-flow fan; PV module temperature; cooling technique; photovoltaic

Article Metrics:

  1. Abdulmunem, A. R., Mohd Samin, P., Abdul Rahman, H., Hussien, H. A., Izmi Mazali, I., & Ghazali, H. (2021). Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink. Renewable Energy, 173, 520–530. https://doi.org/10.1016/j.renene.2021.04.014
  2. Adaramola, M. S. (2015). Techno-economic analysis of a 2.1 kW rooftop photovoltaic-grid-tied system based on actual performance. Energy Conversion and Management, 101, 85–93. https://doi.org/10.1016/j.enconman.2015.05.038
  3. Al-Bashir, A., Al-Dweri, M., Al-Ghandoor, A., Hammad, B., & Al-Kouz, W. (2020). ANALYSIS OF EFFECTS OF SOLAR IRRADIANCE, CELL TEMPERATURE AND WIND SPEED ON PHOTOVOLTAIC SYSTEMS PERFORMANCE. International Journal of Energy Economics and Policy, 10(1), 353–359. https://doi.org/10.32479/ijeep.8591
  4. Al-Kayiem, H., & Mohammad, S. (2019). Potential of Renewable Energy Resources with an Emphasis on Solar Power in Iraq: An Outlook. Resources, 8(1), 42. https://doi.org/10.3390/resources8010042
  5. Amelia, A. R., Irwan, Y. M., Irwanto, M., Leow, W. Z., Gomesh, N., Safwati, I., & Anuar, M. A. M. (2016). Cooling on photovoltaic panel using forced air convection induced by DC fan. International Journal of Electrical and Computer Engineering, 6(2), 526–534. https://doi.org/10.11591/ijece.v6i1.9118
  6. Arcuri, N., Reda, F., & De Simone, M. (2014). Energy and thermo-fluid-dynamics evaluations of photovoltaic panels cooled by water and air. Solar Energy, 105, 147–156. https://doi.org/10.1016/j.solener.2014.03.034
  7. Castanheira, A. F. A., Fernandes, J. F. P., & Branco, P. J. C. (2018). Demonstration project of a cooling system for existing PV power plants in Portugal. Applied Energy, 211, 1297–1307. https://doi.org/10.1016/j.apenergy.2017.11.086
  8. Chandra S., A. S. and D. S. C. (2018). Effect of Ambient Temperature and Wind Speed on Performance Ratio of Polycrystalline Solar Photovoltaic Module: an Experimental Analysis. International Energy Journal, 18, 171 – 180. https://www.researchgate.net/publication/325952592_Effect_of_ambient_temperature_and_wind_speed_on_performance_ratio_of_polycrystalline_solar_photovoltaic_module_An_experimental_analysis
  9. Dida, M., Boughali, S., Bechki, D., & Bouguettaia, H. (2021). Experimental investigation of a passive cooling system for photovoltaic modules efficiency improvement in hot and arid regions. Energy Conversion and Management, 243. https://doi.org/10.1016/j.enconman.2021.114328
  10. Elbreki, A. M., Sopian, K., Fazlizan, A., & Ibrahim, A. (2020). An innovative technique of passive cooling PV module using lapping fins and planner reflector. Case Studies in Thermal Engineering, 19, 100607. https://doi.org/10.1016/j.csite.2020.100607
  11. Elminshawy, N. A. S., El Ghandour, M., Gad, H. M., El-Damhogi, D. G., El-Nahhas, K., & Addas, M. F. (2019). The performance of a buried heat exchanger system for PV panel cooling under elevated air temperatures. Geothermics, 82, 7–15. https://doi.org/10.1016/j.geothermics.2019.05.012
  12. Elminshawy, N. A. S., Mohamed, A. M. I., Morad, K., Elhenawy, Y., & Alrobaian, A. A. (2019). Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic. Applied Thermal Engineering, 148, 1–9. https://doi.org/10.1016/j.applthermaleng.2018.11.027
  13. Fatoni, E. K. A., Taqwa, A., & Kusumanto, R. (2019). Solar Panel Performance Improvement using Heatsink Fan as the Cooling Effect. Journal of Physics: Conference Series, 1167(1). https://doi.org/10.1088/1742-6596/1167/1/012031
  14. Gomaa, M. R., Hammad, W., Al-Dhaifallah, M., & Rezk, H. (2020). Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis. Solar Energy, 211, 1110–1127. https://doi.org/10.1016/j.solener.2020.10.062
  15. Grubišić Čabo, F., Nižetić, S., Giama, E., & Papadopoulos, A. (2020). Techno-economic and environmental evaluation of passive cooled photovoltaic systems in Mediterranean climate conditions. Applied Thermal Engineering, 169, 114947. https://doi.org/10.1016/j.applthermaleng.2020.114947
  16. Haidar, Z. A., Orfi, J., & Kaneesamkandi, Z. (2018). Experimental investigation of evaporative cooling for enhancing photovoltaic panels efficiency. Results in Physics, 11, 690–697. https://doi.org/10.1016/j.rinp.2018.10.016
  17. Hamzat, A. K., Sahin, A. Z., Omisanya, M. I., & Alhems, L. M. (2021). Advances in PV and PVT cooling technologies: A review. Sustainable Energy Technologies and Assessments, 47, 101360. https://doi.org/10.1016/j.seta.2021.101360
  18. Hernandez-Perez, J. G., Carrillo, J. G., Bassam, A., Flota-Banuelos, M., & Patino-Lopez, L. D. (2021). Thermal performance of a discontinuous finned heatsink profile for PV passive cooling. Applied Thermal Engineering, 184, 116238. https://doi.org/10.1016/j.applthermaleng.2020.116238
  19. Hussien, H. A., Numan, A. H., & Abdulmunem, A. R. (2015). Improving of the photovoltaic / thermal system performance using water cooling technique. IOP Conference Series: Materials Science and Engineering, 78(1). https://doi.org/10.1088/1757-899X/78/1/012020
  20. Idoko, L., Anaya-Lara, O., & McDonald, A. (2018). Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports, 4, 357–369. https://doi.org/10.1016/j.egyr.2018.05.004
  21. Jie Ji, Jian-Ping Lu, Tin-Tai Chow, Wei He, G. P. (2007). A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy, 84, 222–237. https://doi.org/10.1016/j.apenergy.2006.04.009
  22. Joseph Paul, S., Kumar, U., & Jain, S. (2021). Photovoltaic cells cooling techniques for energy efficiency optimization. Materials Today: Proceedings, 46, 5458–5463. https://doi.org/10.1016/j.matpr.2020.09.197
  23. Kabeel, A. E., Abdelgaied, M., & Sathyamurthy, R. (2019). A comprehensive investigation of the optimization cooling technique for improving the performance of PV module with reflectors under Egyptian conditions. Solar Energy, 186, 257–263. https://doi.org/10.1016/j.solener.2019.05.019
  24. Kaewchoothong, N., Sukato, T., Narato, P., & Nuntadusit, C. (2021). Flow and heat transfer characteristics on thermal performance inside the parallel flow channel with alternative ribs based on photovoltaic/thermal (PV/T) system. Applied Thermal Engineering, 185, 116237. https://doi.org/10.1016/j.applthermaleng.2020.116237
  25. Kidegho, G., Njoka, F., Muriithi, C., & Kinyua, R. (2021). Evaluation of thermal interface materials in mediating PV cell temperature mismatch in PV–TEG power generation. Energy Reports, 7, 1636–1650. https://doi.org/10.1016/j.egyr.2021.03.015
  26. Lebbi, M., Touafek, K., Benchatti, A., Boutina, L., Khelifa, A., Baissi, M. T., & Hassani, S. (2021). Energy performance improvement of a new hybrid PV/T Bi-fluid system using active cooling and self-cleaning: Experimental study. Applied Thermal Engineering, 182, 116033. https://doi.org/10.1016/j.applthermaleng.2020.116033
  27. Lee, S., Iyengar, S., Feng, M., Shenoy, P., & Maji, S. (2019). Deeproof: A data-driven approach for solar potential estimation using rooop imagery. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2105–2113. https://doi.org/10.1145/3292500.3330741
  28. M. R. Abdelkader, A. Al-Salaymeh, Z. Al-Hamamre, F. S. (2010). A comparative Analysis of the Performance of Monocrystalline and Multiycrystalline PV Cells in Semi Arid Climate Conditions: the Case of Jordan. Jordan Journal of Mechanical and Industrial Engineering. All Rights Reserved, 4(5), 543–552
  29. Mattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P. (2006). Calculation of the polycrystalline PV module temperature using a simple method of energy balance. Renewable Energy, 31(4), 553–567. https://doi.org/10.1016/j.renene.2005.03.010
  30. Mazón-Hernández, R., García-Cascales, J. R., Vera-García, F., Káiser, A. S., & Zamora, B. (2013). Improving the Electrical Parameters of a Photovoltaic Panel by Means of an Induced or Forced Air Stream. International Journal of Photoenergy, 2013, 1–10. https://doi.org/10.1155/2013/830968
  31. Moharram, K. A., Abd-Elhady, M. S., Kandil, H. A., & El-Sherif, H. (2013). Enhancing the performance of photovoltaic panels by water cooling. Ain Shams Engineering Journal, 4(4), 869–877. https://doi.org/10.1016/j.asej.2013.03.005
  32. Pandey, O. P., Dung, V. V. D., Mishra, P., & Kumar, R. (2022). Simulating rooftop solar arrays with varying design parameters to study effect of mutual shading. Energy for Sustainable Development, 68, 425–440. https://doi.org/10.1016/j.esd.2022.04.010
  33. Rawat, R., Kaushik, S. C., & Lamba, R. (2016). A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system. Renewable and Sustainable Energy Reviews, 57, 1506–1519. https://doi.org/10.1016/j.rser.2015.12.228
  34. Reddy, S. R., Ebadian, M. A., & Lin, C.-X. (2015). A review of PV–T systems: Thermal management and efficiency with single phase cooling. International Journal of Heat and Mass Transfer, 91, 861–871. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.134
  35. Sethiya, A. (2021). Cooling material for solar PV module to improve the generation efficiency. Materials Today: Proceedings, 47, 7064–7066. https://doi.org/10.1016/j.matpr.2021.06.122
  36. Sharma, R., Singh, S., Mehra, K. S., & Kumar, R. (2021). Performance enhancement of solar photovoltaic system using different cooling techniques. Materials Today: Proceedings, 46, 11023–11028. https://doi.org/10.1016/j.matpr.2021.02.132
  37. Smith, M. K., Selbak, H., Wamser, C. C., Day, N. U., Krieske, M., Sailor, D. J., & Rosenstiel, T. N. (2014). Water Cooling Method to Improve the Performance of Field-Mounted, Insulated, and Concentrating Photovoltaic Modules. Journal of Solar Energy Engineering, 136(3). https://doi.org/10.1115/1.4026466
  38. Sudhakar, P., Santosh, R., Asthalakshmi, B., Kumaresan, G., & Velraj, R. (2021). Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique. Renewable Energy, 172, 1433–1448. https://doi.org/10.1016/j.renene.2020.11.138
  39. Tonui, J. K., & Tripanagnostopoulos, Y. (2007). Improved PV/T solar collectors with heat extraction by forced or natural air circulation. Renewable Energy, 32(4), 623–637. https://doi.org/10.1016/j.renene.2006.03.006
  40. Union of Concerned Scientists. (2015). Rooftop Solar Panels: Benefits, Costs, and Smart Policies. https://www.ucsusa.org/clean-energy/renewable-energy/rooftop-solar-panels-benefits-costs-policies#.WsqAlohuaUk
  41. United Nations. (2016). The World’s Cities in 2016: Data Booklet. In Economic and social affair
  42. Urrego-Ortiz, J., Martínez, J. A., Arias, P. A., & Jaramillo-Duque, Á. (2019). Assessment and Day-Ahead Forecasting of Hourly Solar Radiation in Medellín, Colombia. Energies, 12(22), 4402. https://doi.org/10.3390/en12224402
  43. Verma, S., Mohapatra, S., Chowdhury, S., & Dwivedi, G. (2021). Cooling techniques of the PV module: A review. Materials Today: Proceedings, 38, 253–258. https://doi.org/10.1016/j.matpr.2020.07.130
  44. Vishal Shah, Jerimiah Booream-Phelps, S. M. (2014). 2014 Outlook: Let the Second Gold Rush Begin. Deutsche Bank Markets Reserch. http://www.qualenergia.it/sites/default/files/articolo-doc/DBSolar.pdf
  45. Yusoff, N. F., Zakaria, N. Z., Zainuddin, H., & Shaari, S. (2017). Mounting Configuration Factor for Building Integrated Photovoltaic and Retrofitted Grid-connected Photovoltaic System. Science Letters, 11(1),1–6. https://ir.uitm.edu.my/id/eprint/60284/1/60284.pdf
  46. Zubeer, S. A., & Ali, O. M. (2021). Performance analysis and electrical production of photovoltaic modules using active cooling system and reflectors. Ain Shams Engineering Journal, 12(2), 2009–2016. https://doi.org/10.1016/j.asej.2020.09.022

Last update:

No citation recorded.

Last update: 2024-04-11 11:47:25

No citation recorded.