1School of Architecture, Southwest Jiaotong University, Chengdu, China
2Department of Architecture, Faculty of Engineering, Koya University, Kurdistan Region, Iraq
3Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai-600077, India
BibTex Citation Data :
@article{IJRED60111, author = {Ahmed Ibrahim and Dnya Zangana and Laleh Dehghanifarsani}, title = {Effectiveness of building envelope parameters and adopting PV panels to reduce reliance on local generators in hot-dry climate}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {3}, year = {2024}, keywords = {Building Envelope; Energy Simulation; Building energy consumption; CO2 emissions; Erbil City; Electricity Demand}, abstract = { The growing energy demand, associated with the inability of the current infrastructure to satisfy this demand, has presented numerous challenges in Iraq's electricity sector. As a result, there has been an increased dependence on local diesel generators to mitigate power outages in homes. However, these generators raise environmental concerns and are associated with high operating CO₂ emissions. Here, using the DesignBuilder and EnergyPlus simulation software, the effectiveness of different building envelope modifications and photovoltaic panels as alternative energy sources was examined. Specifically, the impact of wall and roof insulation, window glazing, and shading devices on energy efficiency was analyzed. The results indicated that roof insulation is the most effective in reducing energy consumption by 28.8%, followed by wall insulation by 13.01%, while the effect of windows glazing and shading devices was insignificant. Furthermore, the installation of solar panels led to a significant reduction in energy demand by 53.6%, thereby decreasing operating carbon dioxide emissions and providing a practical alternative to the use of local generators. Our study offers valuable insights into the design of energy-efficient residential buildings in hot and dry climates. It highlights the importance of selecting appropriate building materials and integrating renewable energy sources, presenting a more environmentally effective solution to mitigate energy shortages. }, pages = {466--479} doi = {10.61435/ijred.2024.60111}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60111} }
Refworks Citation Data :
The growing energy demand, associated with the inability of the current infrastructure to satisfy this demand, has presented numerous challenges in Iraq's electricity sector. As a result, there has been an increased dependence on local diesel generators to mitigate power outages in homes. However, these generators raise environmental concerns and are associated with high operating CO₂ emissions. Here, using the DesignBuilder and EnergyPlus simulation software, the effectiveness of different building envelope modifications and photovoltaic panels as alternative energy sources was examined. Specifically, the impact of wall and roof insulation, window glazing, and shading devices on energy efficiency was analyzed. The results indicated that roof insulation is the most effective in reducing energy consumption by 28.8%, followed by wall insulation by 13.01%, while the effect of windows glazing and shading devices was insignificant. Furthermore, the installation of solar panels led to a significant reduction in energy demand by 53.6%, thereby decreasing operating carbon dioxide emissions and providing a practical alternative to the use of local generators. Our study offers valuable insights into the design of energy-efficient residential buildings in hot and dry climates. It highlights the importance of selecting appropriate building materials and integrating renewable energy sources, presenting a more environmentally effective solution to mitigate energy shortages.
Article Metrics:
Last update:
Last update: 2024-12-11 06:13:08
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.