1University of Rwanda (UR-CST), African Center for Excellence in Energy for Sustainable Development, Kigali, Rwanda
2Imperial College London, Electrical and Electronic Department, London, United Kingdom
3Departament d’Enginyeria Elèctrica, Universitat Politècnica de Catalunya, Spain
BibTex Citation Data :
@article{IJRED60120, author = {Aimable Ngendahayo and Adrià Junyent-Ferré and Joan Marc Rodriguez-Bernuz and Elizabeth Nyeko and Etienne Ntagwirumugara}, title = {Sizing requirements of the photovoltaic charging station for small electrical vehicles}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {4}, year = {2024}, keywords = {Electric vehicles; EventSim; blackout; sensitivity analysis; energy waste.}, abstract = { Electric vehicles (EVs) are being introduced in Rwanda and becoming attractive for different reasons. For instance, these types of vehicles can help decrease air pollution and noise emissions. In addition, it presents an alternative to combustion engines, given the increased price of fuel resources in Rwanda and around the world. This paper presents a tool tailored to optimize the design of an electrical charging station serving small-sized electric vehicles, utilizing the algorithm to assist in sizing stand-alone mopped charging stations. The developed tool is based on the toolbox EventSim from MathWorks, which permits the combination of the simulation of discrete events (such as the arrival of customers at the station) with continuous states (such as the simulation of the charging process). The required PV power was estimated by utilizing solar resources, for the location, from renewables. Ninja. The number of customers arriving at the existing oil station is normalized to estimate the energy requirements of the mopped fleet. A Poisson distribution was proposed to model the battery discharge upon arrival, and different related parameters were evaluated through a sensitivity analysis to identify their effects on the performance of photovoltaic charging station. For the testing values, the station parameters were changed by ±25% to determine the impact of key design parameters on station performance, as well as other satisfaction measures such as average waiting time and average queue length. With a 25% increase in photovoltaic panels, the blackout period decreases by 2.12%, while a 25% decrease in photovoltaic panels causes an increase of 2.18% in the blackout period. Utilizing the energy management system (EMS), the waiting time was reduced by 8%. }, pages = {630--638} doi = {10.61435/ijred.2024.60120}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60120} }
Refworks Citation Data :
Electric vehicles (EVs) are being introduced in Rwanda and becoming attractive for different reasons. For instance, these types of vehicles can help decrease air pollution and noise emissions. In addition, it presents an alternative to combustion engines, given the increased price of fuel resources in Rwanda and around the world. This paper presents a tool tailored to optimize the design of an electrical charging station serving small-sized electric vehicles, utilizing the algorithm to assist in sizing stand-alone mopped charging stations. The developed tool is based on the toolbox EventSim from MathWorks, which permits the combination of the simulation of discrete events (such as the arrival of customers at the station) with continuous states (such as the simulation of the charging process). The required PV power was estimated by utilizing solar resources, for the location, from renewables. Ninja. The number of customers arriving at the existing oil station is normalized to estimate the energy requirements of the mopped fleet. A Poisson distribution was proposed to model the battery discharge upon arrival, and different related parameters were evaluated through a sensitivity analysis to identify their effects on the performance of photovoltaic charging station. For the testing values, the station parameters were changed by ±25% to determine the impact of key design parameters on station performance, as well as other satisfaction measures such as average waiting time and average queue length. With a 25% increase in photovoltaic panels, the blackout period decreases by 2.12%, while a 25% decrease in photovoltaic panels causes an increase of 2.18% in the blackout period. Utilizing the energy management system (EMS), the waiting time was reduced by 8%.
Article Metrics:
Last update:
Last update: 2025-03-27 23:20:50
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.