skip to main content

Nanotechnology-based biodiesel: A comprehensive review on production, and utilization in diesel engine as a substitute of diesel fuel

1Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam

2Faculty of Automotive Engineering, Dong A University, Danang, Viet Nam

3Vietnam Oil and Gas Group, Hanoi, Viet Nam

4 Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

5 PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

6 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India

View all affiliations
Received: 16 Jan 2024; Revised: 1 Mar 2024; Accepted: 15 Mar 2024; Available online: 29 Mar 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

As a sustainable replacement for fossil fuels, biodiesel is a game-changer in the energy sector. There is no strategy to minimize biodiesel's significance as a sustainable, clean fuel source in light of the increasing climate change and environmental sustainability concerns. Nevertheless, conventional biodiesel production methods often run into problems like inadequate conversion efficiency and inappropriate fuel properties, which impede their broad adoption. The revolutionary potential of nanotechnology to circumvent these limitations and revolutionize biodiesel consumption and production is explored in this review paper. There are new possibilities for improving biodiesel output and engine efficiency, thanks to nanotechnology, which can alter matter at the atomic and molecular levels. Using nano-catalysts, nano-emulsification processes, and nano-encapsulation procedures, researchers have made significant advances in improving biodiesel qualities such as stability, combustion efficiency, and viscosity. Through a comprehensive analysis of current literature and research data, this article elucidates the crucial role of nanotechnology in advancing biodiesel technology. By shedding light on the most current advancements, challenges, and potential future outcomes in nano-based biodiesel manufacturing and consumption, this review hopes to add to the growing corpus of knowledge in the field and inspire additional innovation. In conclusion, there is great hope for a sustainable energy future, increased economic growth, and reduced environmental impacts through the application of nanotechnology.  

Fulltext View|Download
Keywords: Biodiesel; Alternative fuels; Sustainability; Circular economy; Nanotechnology; Engine performance; Emission characteristic

Article Metrics:

  1. Aalam, C.S., Saravanan, C.G., 2017. Effects of nano metal oxide blended Mahua biodiesel on CRDI diesel engine. Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2015.09.013
  2. Abdullah, N.R., Shahruddin, N.S., Mamat, R., Ihsan Mamat, A.M., Zulkifli, A., 2014. Effects of Air Intake Pressure on the Engine Performance, Fuel Economy and Exhaust Emissions of A Small Gasoline Engine. J. Mech. Eng. Sci. 6, 949–958. https://doi.org/10.15282/jmes.6.2014.21.0091
  3. Adam, A., Ramlan, N.A., Jaharudin, N.F., Hamzah, H., Othman, M.F., Mrwan, A.A.G., 2017. Analysis of combustion characteristics, engine performance and exhaust emissions of diesel engine fueled with upgraded waste source fuel. Int. J. Hydrogen Energy 42, 17993–18004. https://doi.org/10.1016/j.ijhydene.2017.04.021
  4. Ağbulut, Ü., Karagöz, M., Sarıdemir, S., Öztürk, A., 2020. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel 270, 117521
  5. Ağbulut, Ü., Sarıdemir, S., Rajak, U., Polat, F., Afzal, A., Verma, T.N., 2021. Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. Energy 229, 120611. https://doi.org/10.1016/j.energy.2021.120611
  6. Ahmed, S.F., Debnath, J.C., Mehejabin, F., Islam, N., Tripura, R., Mofijur, M., Hoang, A.T., Rasuld, M.G., Dai-Viet N. Vo, 2023. Utilization of nanomaterials in accelerating the production process of sustainable biofuels. Sustain. Energy Technol. Assessments 55, 102894. https://doi.org/10.1016/j.seta.2022.102894
  7. Aisman, Santosa, Hadiguna, R.A., Nazir, N., 2020. Design of Sustainable Agricultural-Based Biomass Electrification Model in the Islands Area: Prospect of Bamboo Biomass. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2145–2151. https://doi.org/10.18517/ijaseit.10.5.13421
  8. Akubude, V.C., Nwaigwe, K.N., Dintwa, E., 2019. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol. 2, 216–225
  9. Al-Zaban, M.I., Abd El-Aziz, A.R.M., 2024. Production of biodiesel from A spergillus terreus KC462061 using gold-silver nanocatalyst. Green Chem. Lett. Rev. 17. https://doi.org/10.1080/17518253.2023.2295503
  10. Al‐Zaban, M.I., AlHarbi, M.A., Mahmoud, M.A., Bahatheq, A.M., 2022. Production of biodiesel from oleaginous fungal lipid using highly catalytic bimetallic gold‐silver core‐shell nanoparticle. J. Appl. Microbiol. 132, 381–389. https://doi.org/10.1111/jam.15176
  11. Anitescu, G., Bruno, T.J., 2012. Fluid properties needed in supercritical transesterification of triglyceride feedstocks to biodiesel fuels for efficient and clean combustion – A review. J. Supercrit. Fluids 63, 133–149. https://doi.org/10.1016/j.supflu.2011.11.020
  12. Annamalai, M., Dhinesh, B., Nanthagopal, K., SivaramaKrishnan, P., Isaac JoshuaRamesh Lalvani, J., Parthasarathy, M., Annamalai, K., 2016. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy Convers. Manag. https://doi.org/10.1016/j.enconman.2016.06.062
  13. Arumugam, A., Ponnusami, V., 2019. Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renew. Energy 131, 459–471
  14. Ashok, B., Nanthagopal, K., Mohan, A., Johny, A., Tamilarasu, A., 2017. Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine. Energy. https://doi.org/10.1016/j.energy.2017.09.021
  15. Atarod, P., Khlaife, E., Aghbashlo, M., Tabatabaei, M., Hoang, A.T., Mobli, H., Nadian, M.H., Hosseinzadeh-Bandbafha, H., Mohammadi, P., Roodbar Shojaei, T., Mahian, O., Gu, H., Peng, W., Lam, S.S., 2021. Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel ‎emulsion fuel. J. Hazard. Mater. 407, 124369. https://doi.org/10.1016/j.jhazmat.2020.124369
  16. Atasoy, V.E., Suzer, A.E., Ekici, S., 2022. A Comparative Analysis of Exhaust Gas Temperature Based on Machine Learning Models for Aviation Applications. J. Energy Resour. Technol. 144. https://doi.org/10.1115/1.4052771
  17. Ataya, F., Dubé, M.A., Ternan, M., 2007. Acid-Catalyzed Transesterification of Canola Oil to Biodiesel under Single- and Two-Phase Reaction Conditions. Energy & Fuels 21, 2450–2459. https://doi.org/10.1021/ef0701440
  18. Attia, A.M.A., El-Seesy, A.I., El-Batsh, H.M., Shehata, M.S., 2014. Effects of Alumina Nanoparticles Additives Into Jojoba Methyl Ester-Diesel Mixture on Diesel Engine Performance, in: Volume 6B: Energy. American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2014-39988
  19. Babatunde, K.A., Salam, K.K., Aworanti, O.A., Olu-Arotiowa, O.A., Alagbe, S.O., Oluwole, T.D., 2022. Transesterification of castor oil: neuro-fuzzy modelling, uncertainty quantification and optimization study. Syst. Microbiol. Biomanufacturing. https://doi.org/10.1007/s43393-022-00120-9
  20. Bakır, H., Ağbulut, Ü., Gürel, A.E., Yıldız, G., Güvenç, U., Soudagar, M.E.M., Hoang, A.T., Deepanraj, B., Saini, G., Afzal, A., 2022. Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. J. Clean. Prod. 360, 131946. https://doi.org/10.1016/j.jclepro.2022.131946
  21. Balaji, G., Cheralathan, M., 2017. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection Diesel engine. Therm. Sci. 21, 499–510
  22. Balasubramanian, D., Kamaraj, S., Krishnamoorthy, R., 2020. Synthesis of Biodiesel from Waste Cooking Oil by Alkali Doped Calcinated Waste Egg Shell Powder Catalyst and Optimization of Process Parameters to Improve Biodiesel Conversion. WCX SAE World Congress Experience. https://doi.org/10.4271/2020-01-0341
  23. Balasubramanian, D., Papla Venugopal, I., Viswanathan, K., 2019. Characteristics Investigation on Di Diesel Engine with Nano-Particles as an Additive in Lemon Grass Oil. https://doi.org/10.4271/2019-28-0081
  24. Balasubramanian, D., Wongwuttanasatian, T., Venugopal, I.P., Rajarajan, A., 2022. Exploration of combustion behavior in a compression ignition engine fuelled with low-viscous Pimpinella anisum and waste cooking oil biodiesel blends. J. Clean. Prod. 331, 129999
  25. Barboza, A.B. V., Dinesha, P., Rosen, M.A., 2023. Effect of green fuel and green lubricant with metallic nanoparticles on emissions of HC, CO, NOx, and smoke for a compression ignition engine. Environ. Sci. Pollut. Res. 30, 91344–91354. https://doi.org/10.1007/s11356-023-28645-z
  26. Basha, J.S., Al Balushi, M., Soudagar, M.E.M., Safaei, M.R., Mujtaba, M.A., Khan, T.M.Y., Hossain, N., Elfasakhany, A., 2022. Applications of nano-additives in internal combustion engines: a critical review. J. Therm. Anal. Calorim. 147, 9383–9403
  27. Basha, J.S., Anand, R., 2011. Effects of alumina nanoparticles blended jatropha biodiesel fuel on working characteristics of a diesel engine. Int. J. Ind. Engg. Tech 53–62
  28. Basha, S.A., Raja Gopal, K., 2012. A review of the effects of catalyst and additive on biodiesel production, performance, combustion and emission characteristics. Renew. Sustain. Energy Rev. 16, 711–717. https://doi.org/10.1016/j.rser.2011.08.036
  29. Bello, M.O., Solarin, S.A., 2022. Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy. Energy Environ. 33, 64–84. https://doi.org/10.1177/0958305X20985253
  30. Bhagat, R., Panakkal, H., Gupta, I., Ingle, A.P., 2021. Carbon‐Based Nanocatalysts in Biodiesel Production, in: Nano‐ and Biocatalysts for Biodiesel Production. Wiley, pp. 157–181. https://doi.org/10.1002/9781119729969.ch7
  31. Bhattacharya, S., Seth, A., 2023. Application of Nanotechnology for Eco-Friendly and Sustainable Economic Development, in: Diversity and Applications of New Age Nanoparticles. IGI Global, pp. 1–24
  32. Bidir, M.G., Millerjothi, N.K., Adaramola, M.S., Hagos, F.Y., 2021. The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. Energy Reports 7, 3614–3627. https://doi.org/10.1016/j.egyr.2021.05.084
  33. Bin Rashid, A., 2023. Utilization of nanotechnology and nanomaterials in biodiesel production and property enhancement. J. Nanomater. 2023, 1–14
  34. Bitire, S.O., Nwanna, E.C., Jen, T.-C., 2023. The impact of CuO nanoparticles as fuel additives in biodiesel-blend fuelled diesel engine: A review. Energy Environ. 34, 2259–2289
  35. Bora, B.J., Dai Tran, T., Prasad Shadangi, K., Sharma, P., Said, Z., Kalita, P., Buradi, A., Nhanh Nguyen, V., Niyas, H., Tuan Pham, M., Thanh Nguyen Le, C., Dung Tran, V., Phuong Nguyen, X., 2022. Improving combustion and emission characteristics of a biogas/biodiesel-powered dual-fuel diesel engine through trade-off analysis of operation parameters using response surface methodology. Sustain. Energy Technol. Assessments 53, 102455. https://doi.org/10.1016/j.seta.2022.102455
  36. Bortnowska, M., 2009. Development of new technologies for shipping natural gas by sea. Polish Marit. Res. 16, 70–78. https://doi.org/10.2478/v10012-008-0036-2
  37. Brask, J., Damstrup, M.L., Nielsen, P.M., Holm, H.C., Maes, J., De Greyt, W., 2011. Combining Enzymatic Esterification with Conventional Alkaline Transesterification in an Integrated Biodiesel Process. Appl. Biochem. Biotechnol. 163, 918–927. https://doi.org/10.1007/s12010-010-9095-9
  38. Bui, T.T., Luu, H.Q., Hoang, A.T., Konur, O., Huu, T., Pham, M.T., 2022. A review on ignition delay times of 2,5-Dimethylfuran. Energy Sources, Part A Recover. Util. Environ. Eff. 44, 7160–7175. https://doi.org/10.1080/15567036.2020.1860163
  39. Bui, V.G., Tu Bui, T.M., Ong, H.C., Nižetić, S., Bui, V.H., Xuan Nguyen, T.T., Atabani, A.E., Štěpanec, L., Phu Pham, L.H., Hoang, A.T., 2022. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy 252, 124052. https://doi.org/10.1016/j.energy.2022.124052
  40. Calam, A., Solmaz, H., Yılmaz, E., İçingür, Y., 2019. Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy 168, 1208–1216. https://doi.org/10.1016/j.energy.2018.12.023
  41. Chandrasekaran, V., Arthanarisamy, M., Nachiappan, P., Dhanakotti, S., Moorthy, B., 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. Transp. Res. Part D Transp. Environ. 46, 145–156. https://doi.org/10.1016/j.trd.2016.03.015
  42. Changxiong, L., Hu, Y., Yang, Z., Guo, H., 2023. Experimental Study of Fuel Combustion and Emission Characteristics of Marine Diesel Engines Using Advanced Fuels. Polish Marit. Res. 30, 48–58. https://doi.org/10.2478/pomr-2023-0038
  43. Channappagoudra, M., Channappagoudra, M., 2021. Effect of copper oxide nanoadditive on diesel engine performance operated with dairy scum biodiesel Effect of copper oxide nanoadditive on diesel engine performance operated with dairy scum biodiesel. Int. J. Ambient Energy 42, 530–539. https://doi.org/10.1080/01430750.2018.1557553
  44. Chellapandi, P., Saranya, S., 2023. Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Syst. Microbiol. Biomanufacturing. https://doi.org/10.1007/s43393-023-00191-2
  45. Chen, L., Msigwa, G., Yang, M., Osman, A.I., Fawzy, S., Rooney, D.W., Yap, P.-S., 2022. Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20, 2277–2310. https://doi.org/10.1007/s10311-022-01435-8
  46. Chen, S.-Y., Chang, A., Rungsi, A.N., Attanatho, L., Chang, C.-L., Pan, J.-H., Suemanotham, A., Mochizuki, T., Takagi, H., Yang, C.-M., Luengnaruemitchai, A., Chou, H.-H., 2020. Superficial Pd nanoparticles supported on carbonaceous SBA-15 as efficient hydrotreating catalyst for upgrading biodiesel fuel. Appl. Catal. A Gen. 602, 117707. https://doi.org/10.1016/j.apcata.2020.117707
  47. Cherwoo, L., Gupta, I., Flora, G., Verma, R., Kapil, M., Arya, S.K., Ravindran, B., Khoo, K.S., Bhatia, S.K., Chang, S.W., Ngamcharussrivichai, C., Ashokkumar, V., 2023. Biofuels an alternative to traditional fossil fuels: A comprehensive review. Sustain. Energy Technol. Assessments 60, 103503. https://doi.org/10.1016/j.seta.2023.103503
  48. Das, A., Gajghate, S.S., Das, S., Ghatak, M. Das, 2024. An Experimental Investigation on Performances and Emission Characteristics in a Multi-Cylinder Diesel Engine Using Nahar Oil Biodiesel Blended With Carbon Nano Tube. Heat Transf. Eng. 1–12
  49. Das, S., Kashyap, D., Kalita, P., Kulkarni, V., Itaya, Y., 2020. Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2019.109485
  50. Dasta, P., Pratap Singh, Atul, Pratap Singh, Ashish, 2022. Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. Mater. Today Proc. 52, 751–757. https://doi.org/10.1016/j.matpr.2021.10.143
  51. Debbarma, S., Misra, R.D., 2018. Effects of iron nanoparticle fuel additive on the performance and exhaust emissions of a compression ignition engine fueled with diesel and biodiesel. J. Therm. Sci. Eng. Appl. https://doi.org/10.1115/1.4038708
  52. Debbarma, S., Misra, R.D., 2017. Effects of Iron Nanoparticles Blended Biodiesel on the Performance and Emission Characteristics of a Diesel Engine. J. Energy Resour. Technol. 139. https://doi.org/10.1115/1.4036543
  53. Deepak Kumar, T., Sameer Hussain, S., Ramesha, D.K., 2020. Effect of a zinc oxide nanoparticle fuel additive on the performance and emission characteristics of a CI engine fuelled with cotton seed biodiesel blends. Mater. Today Proc. 26, 2374–2378. https://doi.org/10.1016/j.matpr.2020.02.509
  54. Deheri, C., Acharya, S.K., Thatoi, D.N., Mohanty, A.P., 2020. A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel 260, 116337. https://doi.org/10.1016/j.fuel.2019.116337
  55. Dehhaghi, M., Kazemi Shariat Panahi, H., Aghbashlo, M., Lam, S.S., Tabatabaei, M., 2021. The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts. Energy 225, 120259. https://doi.org/10.1016/j.energy.2021.120259
  56. Desniorita, Nazir, N., Novelina, Sayuti, K., 2019. Sustainable design of biorefinery processes on cocoa pod: Optimization of pectin extraction process with variations of pH, temperature, and time. Int. J. Adv. Sci. Eng. Inf. Technol. 9, 2104–2113. https://doi.org/10.18517/ijaseit.9.6.10670
  57. Devarajan, Y., Mahalingam, A., Munuswamy, D.B., Arunkumar, T., 2018. Combustion, performance, and emission study of a research diesel engine fueled with palm oil biodiesel and its additive. Energy & Fuels 32, 8447–8452
  58. Devarajan, Y., Nagappan, B., Subbiah, G., 2019. A comprehensive study on emission and performance characteristics of a diesel engine fueled with nanoparticle-blended biodiesel. Environ. Sci. Pollut. Res. 26, 10662–10672
  59. Dhahad, H.A., Chaichan, M.T., 2020. The impact of adding nano-Al2O3 and nano-ZnO to Iraqi diesel fuel in terms of compression ignition engines’ performance and emitted pollutants. Therm. Sci. Eng. Prog. 18, 100535. https://doi.org/10.1016/j.tsep.2020.100535
  60. Dharmaprabhakaran, T., Karthikeyan, S., Periyasamy, M., Mahendran, G., 2020. Emission analysis of CuO2 nanoparticle addition with blend of Botryococcus braunii algae biodiesel on CI engine. Mater. Today Proc. 33, 2897–2900. https://doi.org/10.1016/j.matpr.2020.02.781
  61. Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E., 2008. Heterogeneous catalysts for biodiesel production. Energy & Fuels 22, 207–217
  62. Doan, Q.B., Nguyen, X.P., Dong, T.M.H., Pham, M.T., Le, T.S., 2022. Performance and emission characteristics of diesel engine using ether additives: A review. Int. J. Renew. Energy Dev. 11, 255–274
  63. Dong, V.H., Sharma, P., 2023. Optimized conversion of waste vegetable oil to biofuel with Meta heuristic methods and design of experiments. J. Emerg. Sci. Eng. 1, 22–28. https://doi.org/10.61435/jese.2023.4
  64. El-Adawy, M., Ismael, M.A., Dalha, I.B., Aziz, A.R.A., El Maghlany, W., 2023. Unveiling the status of emulsified water-in-diesel and nanoparticles on diesel engine attributes. Case Stud. Therm. Eng. 44, 102824. https://doi.org/10.1016/j.csite.2023.102824
  65. El-Seesy, A.I., Attia, A.M.A., El-Batsh, H.M., 2018. The effect of Aluminum oxide nanoparticles addition with Jojoba methyl ester-diesel fuel blend on a diesel engine performance, combustion and emission characteristics. Fuel 224, 147–166. https://doi.org/10.1016/j.fuel.2018.03.076
  66. EL-Seesy, A.I., Hassan, H., 2019. Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance. Renew. Energy 132, 558–574. https://doi.org/10.1016/j.renene.2018.08.026
  67. EL-Seesy, A.I., Hassan, H., He, Z., Ookawara, S., 2020. Improving diesel engine performance using carbon nanomaterials, in: Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier, pp. 77–103
  68. Elma, M., Suhendra, S.A., Wahyuddin, W., Saputri, W., Utami, S.A.A., 2017. Optimum Ratio Between Waste Cooking Oil and Coconut Oilas Raw Material for Biodiesel Production. Int. J. Adv. Sci. Eng. Inf. Technol. 7, 1227–1233
  69. Elumalai, P. V., Dhinesh, B., Jayakar, J., Nambiraj, M., Hariharan, V., 2021. Effects of antioxidants to reduce the harmful pollutants from diesel engine using preheated palm oil–diesel blend. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-021-10652-2
  70. Esmaeili, H., Nourafkan, E., Nakisa, M., Ahmed, W., 2021. Application of nanotechnology for biofuel production, in: Emerging Nanotechnologies for Renewable Energy. Elsevier, pp. 149–172. https://doi.org/10.1016/B978-0-12-821346-9.00005-5
  71. Ettefaghi, E., Ghobadian, B., Rashidi, A., Najafi, G., Khoshtaghaza, M.H., Rashtchi, M., Sadeghian, S., 2018. A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renew. Energy. https://doi.org/10.1016/j.renene.2018.01.086
  72. Fayad, M.A., Abed, A.M., Omran, S.H., Jaber, A.A., Radhi, A.A., Dhahad, H.A., Chaichan, M.T., Yusaf, T., 2022. Influence of Renewable Fuels and Nanoparticles Additives on Engine Performance and Soot Nanoparticles Characteristics. Int. J. Renew. Energy Dev. 11, 1068–1077. https://doi.org/10.14710/ijred.2022.45294
  73. Fayad, M.A., Sobhi, M., Chaichan, M.T., Badawy, T., Abdul-Lateef, W.E., Dhahad, H.A., Yusaf, T., Isahak, W.N.R.W., Takriff, M.S., Al-Amiery, A.A., 2023. Reducing soot nanoparticles and NOX emissions in CRDI diesel engine by incorporating TiO2 nano-additives into biodiesel blends and using high rate of EGR. Energies 16, 3921
  74. Fayaz, H., Mujtaba, M.A., Soudagar, M.E.M., Razzaq, L., Nawaz, S., Nawaz, M.A., Farooq, M., Afzal, A., Ahmed, W., Khan, T.M.Y., Bashir, S., Yaqoob, H., EL-Seesy, A.I., Wageh, S., Al-Ghamdi, A., Elfasakhany, A., 2021. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel 293, 120420. https://doi.org/10.1016/j.fuel.2021.120420
  75. Fernández, I.A., Gómez, M.R., Gómez, J.R., López-González, L.M., 2020a. Generation of H 2 on Board Lng Vessels for Consumption in the Propulsion System. Polish Marit. Res. 27, 83–95. https://doi.org/10.2478/pomr-2020-0009
  76. Fernández, I.A., Gómez, M.R., Gómez, J.R., López-González, L.M., 2020b. Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System. Polish Marit. Res. 27, 83–95. https://doi.org/10.2478/pomr-2020-0009
  77. Feroskhan, M., Ismail, S., Gosavi, S., Tankhiwale, P., Khan, Y., 2019. Optimization of performance and emissions in a biogas–diesel dual fuel engine with cerium oxide nanoparticle addition. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. https://doi.org/10.1177/0954407018764165
  78. Fiore, M., Magi, V., Viggiano, A., 2020. Internal combustion engines powered by syngas: A review. Appl. Energy 276, 115415. https://doi.org/10.1016/j.apenergy.2020.115415
  79. Flamarz Al-Arkawazi, S.A., 2019. The gasoline fuel quality impact on fuel consumption, air-fuel ratio (AFR), lambda (λ) and exhaust emissions of gasoline-fueled vehicles. Cogent Eng. 6, 1616866. https://doi.org/10.1080/23311916.2019.1616866
  80. Gad, M.S., Ağbulut, Ü., Afzal, A., Panchal, H., Jayaraj, S., Qasem, N.A.., El-Shafay, A.S., 2023. A comprehensive review on the usage of the nano-sized particles along with diesel/biofuel blends and their impacts on engine behaviors. Fuel 339, 127364. https://doi.org/10.1016/j.fuel.2022.127364
  81. Ganesan, S., Padmanabhan, S., Mahalingam, S., Shanjeevi, C., 2020. Environmental impact of VCR diesel engine characteristics using blends of cottonseed oil with nano additives. Energy Sources, Part A Recover. Util. Environ. Eff. 42, 761–772. https://doi.org/10.1080/15567036.2019.1602196
  82. Gavhane, R.S., Kate, A.M., Pawar, A., Soudagar, M.E.M., Fayaz, H., 2020. Effect of Soybean biodiesel and Copper coated Zinc oxide Nanoparticles on Enhancement of Diesel Engine Characteristics. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/10.1080/15567036.2020.1856237
  83. Gavhane, R.S., Kate, A.M., Soudagar, M.E.M., Wakchaure, V.D., Balgude, S., Rizwanul Fattah, I.M., Nik-Ghazali, N.-N., Fayaz, H., Khan, T.M.Y., Mujtaba, M.A., Kumar, R., Shahabuddin, M., 2021. Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine. Energies 14, 1489. https://doi.org/10.3390/en14051489
  84. Gharehghani, A., Asiaei, S., Khalife, E., Najafi, B., Tabatabaei, M., 2019. Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in Diesel–Biodiesel blend. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2018.10.338
  85. Ghojel, J., Honnery, D., Al-Khaleefi, K., 2006. Performance, emissions and heat release characteristics of direct injection diesel engine operating on diesel oil emulsion. Appl. Therm. Eng. 26, 2132–2141. https://doi.org/10.1016/j.applthermaleng.2006.04.014
  86. Guin, M., Kundu, T., Singh, R., 2022. Applications of Nanotechnology in Biofuel Production, in: Bio-Clean Energy Technologies Volume 2. Springer, pp. 297–332
  87. Gumba, R.E., Saallah, S., Misson, M., Ongkudon, C.M., Anton, A., 2016. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Res. J. 3, 431–447. https://doi.org/10.18331/BRJ2016.3.3.3
  88. Gupta, A., Kumar, R., Maurya, A., Ahmadi, M.H., Ongar, B., Yegzekova, A., Sharma, J.P., Kanchan, S., Shelare, S., 2024. A comparative study of the impact on combustion and emission characteristics of nanoparticle‐based fuel additives in the internal combustion engine. Energy Sci. Eng. 12, 284–303. https://doi.org/10.1002/ese3.1614
  89. Hadiyanto, H., Aini, A. P., Widayat, W., Kusmiyati, K., Budiman, A., & Roesyadi, A. (2020). Multi-Feedstocks Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil and Waste Cooking Oil. International Journal of Renewable Energy Development, 9(1), 119-123. https://doi.org/10.14710/ijred.9.1.119-123
  90. Hanaki, K., Portugal-Pereira, J., 2018. The effect of biofuel production on greenhouse gas emission reductions. Biofuels Sustain. Holist. Perspect. policy-making 53–71
  91. Hasibuan, S., Adiyatna, H., Widowati, I., Kandasamy, J., 2020. Feasibility Analysis of Compact-Mobile Biomass Pallet Technology as Renewable Fuel for Small and Medium Industries. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2484–2490. https://doi.org/10.18517/ijaseit.10.6.13775
  92. Hassan, A., Ilyas, S.Z., Agathopoulos, S., Hussain, S.M., Jalil, A., Ahmed, S., Baqir, Y., 2021. Evaluation of adverse effects of particulate matter on human life. Heliyon 7, e05968. https://doi.org/10.1016/j.heliyon.2021.e05968
  93. Hassan, A.A., Smith, J.D., 2020. Investigation of microwave-assisted transesterification reactor of waste cooking oil. Renew. Energy 162, 1735–1746. https://doi.org/10.1016/j.renene.2020.09.123
  94. Hatami, M., Hasanpour, M., Jing, D., 2020. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part I: Nano-fuels. J. Mol. Liq. 114250
  95. Hawi, M., Elwardany, A., Ismail, M., Ahmed, M., 2019. Experimental investigation on performance of a compression ignition engine fueled with waste cooking oil biodiesel–diesel blend enhanced with iron-doped cerium oxide nanoparticles. Energies 12, 798
  96. Hoang, A.T., 2021a. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. J. Mar. Eng. Technol. 20, 299–311. https://doi.org/10.1080/20464177.2018.1532734
  97. Hoang, A.T., 2021b. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. Fuel Process. Technol. 218, 106840. https://doi.org/10.1016/j.fuproc.2021.106840
  98. Hoang, A.T., 2019. Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. Energy 171, 795–808. https://doi.org/10.1016/j.energy.2019.01.076
  99. Hoang, A.T., Le, A.T., 2019. A review on deposit formation in the injector of diesel engines running on biodiesel. Energy Sources, Part A Recover. Util. Environ. Eff. 41, 584–599. https://doi.org/10.1080/15567036.2018.1520342
  100. Hoang, A.T., Noor, M.M., Pham, X.D., 2018. Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel. Int. J. Automot. Mech. Eng. 15, 5110–5125. https://doi.org/10.15282/ijame.15.1.2018.16.0395
  101. Hoang, A.T., Pandey, A., Huang, Z., Luque, R., Ng, K.H., Papadopoulos, A.M., Chen, W.-H., Rajamohan, S., Hadiyanto, H., Nguyen, X.P., Pham, V.V., 2022a. Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route. ACS Sustain. Chem. Eng. 10, 3079–3115. https://doi.org/10.1021/acssuschemeng.1c06363
  102. Hoang, A.T., Pandey, A., Martinez De Osés, F.J., Chen, W.-H., Said, Z., Ng, K.H., Ağbulut, Ü., Tarełko, W., Ölçer, A.I., Nguyen, X.P., 2023a. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew. Sustain. Energy Rev. 188, 113790. https://doi.org/10.1016/j.rser.2023.113790
  103. Hoang, A.T., Pham, V.V., 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sustain. Energy Rev. 148, 111265. https://doi.org/10.1016/j.rser.2021.111265
  104. Hoang, A.T., Sirohi, R., Pandey, A., Nižetić, S., Lam, S.S., Chen, W.-H., Luque, R., Thomas, S., Arıcı, M., Pham, V.V., 2023b. Biofuel production from microalgae: challenges and chances. Phytochem. Rev. 22, 1089–1126. https://doi.org/10.1007/s11101-022-09819-y
  105. Hoang, A.T., Tabatabaei, M., Aghbashlo, M., Carlucci, A.P., Ölçer, A.I., Le, A.T., Ghassemi, A., 2021. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renew. Sustain. Energy Rev. 135, 110204. https://doi.org/10.1016/j.rser.2020.110204
  106. Hoang, A.T., Tran, V.D., Dong, V.H., Le, A.T., 2022b. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. J. Mar. Eng. Technol. 21, 73–81. https://doi.org/10.1080/20464177.2019.1595355
  107. Hoang, A.T., Xuan Le, M., Nižetić, S., Huang, Z., Ağbulut, Ü., Veza, I., Said, Z., Tuan Le, A., Dung Tran, V., Phuong Nguyen, X., 2022c. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: A control comparison between biodiesel and diesel fuel. Fuel 326, 124981. https://doi.org/10.1016/j.fuel.2022.124981
  108. Hoseini, S.S., Najafi, G., Ghobadian, B., Ebadi, M.T., Mamat, R., Yusaf, T., 2020. Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel. Renew. Energy 145, 190–201. https://doi.org/10.1016/j.renene.2019.06.020
  109. Hossain, A., Hussain, A., 2019. Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel. Energies 12, 921. https://doi.org/10.3390/en12050921
  110. Hosseini, S.A., 2022. Nanocatalysts for biodiesel production. Arab. J. Chem. 15, 104152. https://doi.org/10.1016/j.arabjc.2022.104152
  111. Hosseini, S.H., Taghizadeh-Alisaraei, A., Ghobadian, B., Abbaszadeh-Mayvan, A., 2017. Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renew. Energy. https://doi.org/10.1016/j.renene.2017.04.013
  112. Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G., 2018. Biodiesel production by microalgal biotechnology, in: Renewable Energy. Routledge, p. Vol3_378-Vol3_395
  113. Huang, Wan, Liu, Zhang, Ma, Zhang, Zhou, 2019. A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance. Energies 12, 2979. https://doi.org/10.3390/en12152979
  114. Hussain, F., Soudagar, M.E.M., Afzal, A., Mujtaba, M.A., Rizwanul Fattah, I.M., Naik, B., Mulla, M.H., Badruddin, I.A., Yunus Khan, T.M., Raju, V.D., Gavhane, R.S., Ashrafur Rahman, S.M., 2020. Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce-ZnO nanoparticle additive added to soybean biodiesel blends. Energies 13, 1–20. https://doi.org/10.3390/en13174578
  115. Hussain Vali, R., Hoang, A.T., Marouf Wani, M., Pali, H.S., Balasubramanian, D., Arıcı, M., Said, Z., Nguyen, X.P., 2022. Optimization of variable compression ratio diesel engine fueled with Zinc oxide nanoparticles and biodiesel emulsion using response surface methodology. Fuel 323, 124290. https://doi.org/10.1016/j.fuel.2022.124290
  116. Huzayyin, A.S., Bawady, A.H., Rady, M.A., Dawood, A., 2004. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel. Energy Convers. Manag. 45, 2093–2112. https://doi.org/10.1016/j.enconman.2003.10.017
  117. Ilham, N.I., Hussin, M.Z., Dahlan, N.Y., Setiawan, E.A., 2022. Prospects and Challenges of Malaysia’s Distributed Energy Resources in Business Models Towards Zero – Carbon Emission and Energy Security. Int. J. Renew. Energy Dev. 11, 1089–1100. https://doi.org/10.14710/ijred.2022.45662
  118. Ingle, A.P., Chandel, A.K., Philippini, R., Martiniano, S.E., da Silva, S.S., 2020. Advances in nanocatalysts mediated biodiesel production: a critical appraisal. Symmetry (Basel). 12, 256
  119. Jan, H.A., Saqib, N.U., Khusro, A., Sahibzada, M.U.K., Rauf, M., Alghamdi, S., Almehmadi, M., Khandaker, M.U., Emran, T. Bin, Mohafez, H., 2022. Synthesis of biodiesel from Carthamus tinctorius L. oil using TiO2 nanoparticles as a catalyst. J. King Saud Univ. - Sci. 34, 102317. https://doi.org/10.1016/j.jksus.2022.102317
  120. Jeyakumar, N., Balasubramanian, D., Sankaranarayanan, M., Karuppasamy, K., Wae-Hayee, M., Le, V.V., Tran, V.D., Hoang, A.T., 2023. Using Pithecellobium Dulce seed-derived biodiesel combined with Groundnut shell nanoparticles for diesel engines as a well-advised approach toward sustainable waste-to-energy management. Fuel 337, 127164. https://doi.org/10.1016/j.fuel.2022.127164
  121. Jeyakumar, N., Narayanasamy, B., Balasubramanian, D., Viswanathan, K., 2020. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. Fuel 281, 118614. https://doi.org/10.1016/j.fuel.2020.118614
  122. Jiaqiang, E., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., Zhu, H., Liu, T., Peng, Q., Zhang, Z., 2017. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renew. Sustain. Energy Rev. 80, 620–647
  123. Jin, C., Wei, J., 2023. The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel: A review. Fuel 343, 127940. https://doi.org/10.1016/j.fuel.2023.127940
  124. Jit Sarma, C., Sharma, P., Bora, B.J., Bora, D.K., Senthilkumar, N., Balakrishnan, D., Ayesh, A.I., 2023. Improving the combustion and emission performance of a diesel engine powered with mahua biodiesel and TiO2 nanoparticles additive. Alexandria Eng. J. 72, 387–398. https://doi.org/10.1016/j.aej.2023.03.070
  125. Joshi, N.C., Gururani, P., Bhatnagar, P., Kumar, V., Vlaskin, M.S., 2023. Advances in Metal Oxide‐based Nanocatalysts for Biodiesel Production: A Review. ChemBioEng Rev. 10, 258–271. https://doi.org/10.1002/cben.202200019
  126. Jumaa, H., Mashkour, M.A., 2021. Humidification Effect on the Performance and Emissions of (DI) Diesel Engine Running on Diesel Fuel with Biodiesel Blended Nano Additives. Eng. Technol. J. 39, 790–803
  127. Jume, B.H., Gabris, M.A., Rashidi Nodeh, H., Rezania, S., Cho, J., 2020. Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles. Renew. Energy 162, 2182–2189. https://doi.org/10.1016/j.renene.2020.10.046
  128. Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., 2020. Emission analysis of CI engine with CeO2 nanoparticles added neochloris oleoabundans biodiesel-diesel fuel blends. Mater. Today Proc. 33, 2877–2881. https://doi.org/10.1016/j.matpr.2020.02.777
  129. Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., Dharmaprabhakaran, T., 2023. Experimental studies on the influence of copper oxide nanoparticle on biodiesel-diesel fuel blend in CI engine. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 8997–9012. https://doi.org/10.1080/15567036.2019.1679290
  130. Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., Dharmaprabhakaran, T., 2019. Performance, emission and combustion characteristics of RuO2 nanoparticles addition with neochloris oleoabundans algae biodiesel on CI engine. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–15. https://doi.org/10.1080/15567036.2019.1694102
  131. Kalita, P., Basumatary, B., Saikia, P., Das, B., Basumatary, S., 2022. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus 6, 100087. https://doi.org/10.1016/j.nexus.2022.100087
  132. Kalyani, T., Prasad, L.S.V., Kolakoti, A., 2023. Biodiesel Production from a Naturally Grown Green Algae Spirogyra Using Heterogeneous Catalyst: An Approach to RSM Optimization Technique. Int. J. Renew. Energy Dev. 12, 300–312. https://doi.org/10.14710/ijred.2023.50065
  133. Kannaiyan, K., Sadr, R., 2017. The effects of alumina nanoparticles as fuel additives on the spray characteristics of gas-to-liquid jet fuels. Exp. Therm. Fluid Sci. 87, 93–103
  134. Kannaiyan, K., Sadr, R., Kumaravel, V., 2019. Application of nanoparticles in clean fuels. Nanostructured Mater. Energy Relat. Appl. 223–242
  135. Karthickeyan, V., Ashok, B., Thiyagarajan, S., Nanthagopal, K., Geo, V.E., Dhinesh, B., 2020. Comparative analysis on the influence of antioxidants role with Pistacia khinjuk oil biodiesel to reduce emission in diesel engine. Heat Mass Transf. 56, 1275–1292. https://doi.org/10.1007/s00231-019-02797-6
  136. Karthikeyan, S., Elango, A., Prathima, A., 2016. The effect of cerium oxide additive on the performance and emission characteristics of a CI engine operated with rice bran biodiesel and its blends. Int. J. Green Energy. https://doi.org/10.1080/15435075.2014.952419
  137. Kegl, T., Kovač Kralj, A., Kegl, B., Kegl, M., 2021. Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. Prog. Energy Combust. Sci. 83, 100897. https://doi.org/10.1016/j.pecs.2020.100897
  138. Keskin, A., Yaşar, A., Yıldızhan, Ş., Uludamar, E., Emen, F.M., Külcü, N., 2018. Evaluation of diesel fuel-biodiesel blends with palladium and acetylferrocene based additives in a diesel engine. Fuel. https://doi.org/10.1016/j.fuel.2017.11.154
  139. Khan, A.I., Arasu, A.V., 2019. A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Therm. Sci. Eng. Prog. 11, 334–364
  140. Khan, N., Sudhakar, K., Mamat, R., 2021. Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality. Sustainability 13, 12374. https://doi.org/10.3390/su132212374
  141. Khan, S., Dewang, Y., Raghuwanshi, J., Shrivastava, A., Sharma, V., 2020. Nanoparticles as fuel additive for improving performance and reducing exhaust emissions of internal combustion engines. Int. J. Environ. Anal. Chem. 1–23. https://doi.org/10.1080/03067319.2020.1722810
  142. Khoobbakht, G., Kheiralipour, K., Rasouli, H., Rafiee, M., Hadipour, M., Karimi, M., 2020. Experimental exergy analysis of transesterification in biodiesel production. Energy 196, 117092. https://doi.org/10.1016/j.energy.2020.117092
  143. Kishore, N.P., Gugulothu, S.K., 2022. Effect of iron oxide nanoparticles blended concentration on performance, combustion and emission characteristics of crdi diesel engine running on mahua methyl ester biodiesel. J. Inst. Eng. Ser. C 103, 167–180
  144. Kohli, S., Pavani Srikavya, B., Kishor Dhapekar, N., Tiwari, R., Kumar, R., Singh Yadav, A., Sharma, N., Sharma, A., 2023. Impact of nano materials on engine performance run on biofuels. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2023.07.133
  145. Kolakoti, A., Setiyo, M., Rochman, M.L., 2022. A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach. Int. J. Renew. Energy Dev. 11, 703–712
  146. Konwar, L.J., Boro, J., Deka, D., 2014. Review on latest developments in biodiesel production using carbon-based catalysts. Renew. Sustain. Energy Rev. 29, 546–564. https://doi.org/10.1016/j.rser.2013.09.003
  147. Kowalski, J., Tarelko, W., 2009a. NOx emission from a two-stroke ship engine. Part 1: Modeling aspect. Appl. Therm. Eng. 29, 2153–2159. https://doi.org/10.1016/j.applthermaleng.2008.06.032
  148. Kowalski, J., Tarelko, W., 2009b. NOx emission from a two-stroke ship engine: Part 2 – Laboratory test. Appl. Therm. Eng. 29, 2160–2165. https://doi.org/10.1016/j.applthermaleng.2008.06.031
  149. Küçükosman, R., Yontar, A.A., Ocakoglu, K., 2022. Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. J. Anal. Appl. Pyrolysis 165, 105575
  150. Kumar, A.M., Kannan, M., Nataraj, G., 2020. A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renew. Energy 146, 1781–1795. https://doi.org/10.1016/j.renene.2019.06.168
  151. Kumar, L.R., Yellapu, S.K., Tyagi, R.D., Drogui, P., 2021. Biodiesel production from microbial lipid obtained by intermittent feeding of municipal sludge and treated crude glycerol. Syst. Microbiol. Biomanufacturing 1, 344–355. https://doi.org/10.1007/s43393-021-00030-2
  152. Kumar, M.V., Babu, A.V., Kumar, P.R., 2019. Influence of metal-based cerium oxide nanoparticle additive on performance, combustion, and emissions with biodiesel in diesel engine. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-018-04075-0
  153. Kumar, N., Aggarwal, N.K., 2024. A review on valorization, management, and applications of the hazardous weed Parthenium hysterophorus. Syst. Microbiol. Biomanufacturing. https://doi.org/10.1007/s43393-023-00226-8
  154. Kumar, S., Dinesha, P., Ajay, C.M., Kabbur, P., 2020. Combined effect of oxygenated liquid and metal oxide nanoparticle fuel additives on the combustion characteristics of a biodiesel engine operated with higher blend percentages. Energy 197, 117194. https://doi.org/10.1016/j.energy.2020.117194
  155. Kumar, S., Dinesha, P., Bran, I., 2017a. Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis. Energy 140, 98–105. https://doi.org/10.1016/j.energy.2017.08.079
  156. Kumar, S., Dinesha, P., Bran, I., 2017b. Experimental investigation of the effects of nanoparticles as an additive in diesel and biodiesel fuelled engines: a review. Biofuels
  157. Kumar, S., Dinesha, P., Rosen, M.A., 2019. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy 185, 1163–1173
  158. Kumar, S.S., Rajan, K., Mohanavel, V., Ravichandran, M., Rajendran, P., Rashedi, A., Sharma, A., Khan, S.A., Afzal, A., 2021. Combustion, performance, and emission behaviors of biodiesel fueled diesel engine with the impact of alumina nanoparticle as an additive. Sustainability 13, 12103
  159. Kumaravel, S.T., Murugesan, A., Kumaravel, A., 2016. Tyre pyrolysis oil as an alternative fuel for diesel engines – A review. Renew. Sustain. Energy Rev. 60, 1678–1685. https://doi.org/10.1016/j.rser.2016.03.035
  160. Labeckas, G., Slavinskas, S., Rudnicki, J., Zadrąg, R., 2018. The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine. Polish Marit. Res. 25, 108–120. https://doi.org/10.2478/pomr-2018-0013
  161. Lamas, M.I., C.G., R., J., T., J.D., R., 2015. Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels. Polish Marit. Res. 22, 48–52. https://doi.org/10.1515/pomr-2015-0070
  162. Le, T.T., Kumar, R., Roy, M.K., Mishra, M.K., Mahto, P.K., Balasubramanian, D., Truong, T.H., Vu, M.T., 2024. An Experimental Assessment of Waste Transformer Oil and Palm Oil Biodiesel Blended with Diesel Fuel on A Single Cylinder Direct in Diesel Engine. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 246–258. https://doi.org/10.18517/ijaseit.14.1.15998
  163. Le, T.T., Venugopal, I.P., Truong, T.H., Cao, D.N., Le, H.C., Nguyen, X.P., 2023. Effects of CeO2 nanoparticles on engine features, tribology behaviors, and environment. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 8791–8822
  164. Le, V.V., Hoang, A.T., Nizetić, S., Ölçer, A.I., 2021. Flame characteristics and ignition delay times of 2, 5-Dimethylfuran: A systematic review with comparative analysis. J. Energy Resour. Technol. 43, 1–16. https://doi.org/10.1115/1.4048673
  165. Lilik, G.K., Boehman, A.L., 2011. Advanced Diesel Combustion of a High Cetane Number Fuel with Low Hydrocarbon and Carbon Monoxide Emissions. Energy & Fuels 25, 1444–1456. https://doi.org/10.1021/ef101653h
  166. Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., Xu, J., 2021. State-of-the-art technologies for biofuel production from triglycerides: A review. Renew. Sustain. Energy Rev. 148, 111269. https://doi.org/10.1016/j.rser.2021.111269
  167. Lotti, M., Pleiss, J., Valero, F., Ferrer, P., 2018. Enzymatic production of biodiesel: strategies to overcome methanol inactivation. Biotechnol. J. 13, 1700155
  168. Lu, J., Li, B., Li, H., Al-Barakani, A., 2021. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities 108, 102974. https://doi.org/10.1016/j.cities.2020.102974
  169. Madiwale, S., Karthikeyan, A., Bhojwani, V., 2018. Properties investigation and performance analysis of a diesel engine fuelled with Jatropha, Soybean, Palm and Cottonseed biodiesel using Ethanol as an additive. Mater. Today Proc. 5, 657–664. https://doi.org/10.1016/j.matpr.2017.11.130
  170. Maheshwari, P., Haider, M.B., Yusuf, M., Klemeš, J.J., Bokhari, A., Beg, M., Al-Othman, A., Kumar, R., Jaiswal, A.K., 2022. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. J. Clean. Prod. 355, 131588. https://doi.org/10.1016/j.jclepro.2022.131588
  171. Mandotra, S.K., Kumar, R., Upadhyay, S.K., Ramteke, P.W., 2018. Nanotechnology: a new tool for biofuel production. Green Nanotechnol. biofuel Prod. 17–28
  172. Manigandan, S., Ponnusamy, V.K., Devi, P.B., Oke, S.A., Sohret, Y., Venkatesh, S., Vimal, M.R., Gunasekar, P., 2020. Effect of nanoparticles and hydrogen on combustion performance and exhaust emission of corn blended biodiesel in compression ignition engine with advanced timing. Int. J. Hydrogen Energy 45, 3327–3339. https://doi.org/10.1016/j.ijhydene.2019.11.172
  173. Manimaran, R., Mohanraj, T., Ashwin, R., 2023. Green synthesized nano-additive dosed biodiesel-diesel-water emulsion blends for CI engine application: Performance, combustion, emission, and exergy analysis. J. Clean. Prod. 413, 137497. https://doi.org/10.1016/j.jclepro.2023.137497
  174. Manimaran, R., Mohanraj, T., Venkatesan, M., Ganesan, R., Balasubramanian, D., 2022. A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approach. Energy 124293
  175. Marković, M., Jurić, F., Šošić, D.P., Schmalhorst, C., Hoang, A.T., Vujanović, M., 2024. Numerical Assessment of Polyoxymethylene Dimethyl Ether (OME3) Injection Timing in Compression Ignition Engine. Clean Technol. Environ. Policy. 26, 149–167. https://doi.org/10.1007/s10098-023-02619-8
  176. Mathew, G.M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., Binod, P., 2021. Recent advances in biodiesel production: challenges and solutions. Sci. Total Environ. 794, 148751
  177. MEHER, L., VIDYASAGAR, D., NAIK, S., 2006. Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268. https://doi.org/10.1016/j.rser.2004.09.002
  178. Minchev, D., Varbanets, R., Shumylo, O., Zalozh, V., Aleksandrovska, N., Bratchenko, P., Truong, T.H., 2023. Digital Twin Test-Bench Performance for Marine Diesel Engine Applications. Polish Marit. Res. 30, 81–91. https://doi.org/10.2478/pomr-2023-0061
  179. Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Shen How, B., Fui Chin, B.L., 2020. Optimization Study of Syngas Production from Catalytic Air Gasification of Rice Husk. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1784–1791. https://doi.org/10.18517/ijaseit.10.5.9906
  180. Moazeni, F., Chen, Y.-C., Zhang, G., 2019. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 216, 117–128. https://doi.org/10.1016/j.jclepro.2019.01.181
  181. Mobasheri, R., Aitouche, A., Pourtaghi Yousefdeh, S., Zarenezhad Ashkezari, A., 2023. Assessing the Impact of Ethanol/Biodiesel/Diesel Blends and Nanoparticle Fuel Additives on Performance and Emissions in a DI Diesel Engine with EGR Integration: An Experimental Study. Processes 11, 1266
  182. Mofijur, M., Ahmed, S.F., Ahmed, B., Mehnaz, T., Mehejabin, F., Shome, S., Almomani, F., Chowdhury, A.A., Kalam, M.A., Badruddin, I.A., Kamangar, S., 2024. Impact of nanoparticle-based fuel additives on biodiesel combustion: An analysis of fuel properties, engine performance, emissions, and combustion characteristics. Energy Convers. Manag. X 21, 100515. https://doi.org/10.1016/j.ecmx.2023.100515
  183. Mohamad Aziz, N.A., Yunus, R., Kania, D., Abd Hamid, H., 2021. Prospects and Challenges of Microwave-Combined Technology for Biodiesel and Biolubricant Production through a Transesterification: A Review. Molecules 26, 788. https://doi.org/10.3390/molecules26040788
  184. Mostafa, A., Mourad, M., Mustafa, A., Youssef, I., 2023. Influence of aluminum oxide nanoparticles addition with diesel fuel on emissions and performance of engine generator set using response surface methodology. Energy Convers. Manag. X 19, 100389
  185. Mujtaba, M.A., Masjuki, H.H., Kalam, M.A., Noor, F., Farooq, M., Ong, H.C., Gul, M., Soudagar, M.E.M., Bashir, S., Rizwanul Fattah, I.M., 2020. Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies 13, 3375
  186. Murugan, N., Venu, H., Jayaraman, J., Appavu, P., 2022. Emission and performance characteristics study on nanographene oxide additives doped palm oil methyl ester blend in a diesel engine. Int. J. Ambient Energy 43, 1304–1310
  187. Murugesan, P., Elumalai, P.V., Balasubramanian, D., Padmanabhan, S., Murugunachippan, N., Afzal, A., Sharma, P., Kiran, K., Femilda Josephin, J., Varuvel, E.G., Tuan Le, T., Truong, T.H., 2023. Exploration of low heat rejection engine characteristics powered with carbon nanotubes-added waste plastic pyrolysis oil. Process Saf. Environ. Prot. 176, 1101–1119. https://doi.org/10.1016/j.psep.2023.06.051
  188. Murugesan, P., Hoang, A.T., Perumal Venkatesan, E., Santosh Kumar, D., Balasubramanian, D., Le, A.T., Pham, V.V., 2022. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. Int. J. Hydrogen Energy 47, 37617–37634. https://doi.org/10.1016/j.ijhydene.2021.08.107
  189. Mustafa, A., Lougou, B.G., Shuai, Y., Wang, Z., Tan, H., 2020. Current technology development for CO2 utilization into solar fuels and chemicals: A review. J. Energy Chem. 49, 96–123
  190. Nachippan, N.M., Parthasarathy, M., Elumalai, P.V., Backiyaraj, A., Balasubramanian, D., Hoang, A.T., 2022. Experimental assessment on characteristics of premixed charge compression ignition engine fueled with multi-walled carbon nanotube-included Tamanu methyl ester. Fuel 323, 124415. https://doi.org/10.1016/j.fuel.2022.124415
  191. Naik, J.V., Kumar, K.K., 2018. Performance and emission characteristics of diesel engines with Al2O3 and CuO nanoparticles as additives. Int. J. Mech. Eng. Technol. 9, 791–798
  192. Nanda, S., Rana, R., Sarangi, P.K., Dalai, A.K., Kozinski, J.A., 2018. A broad introduction to first-, second-, and third-generation biofuels, in: Recent Advancements in Biofuels and Bioenergy Utilization. Springer, pp. 1–25
  193. Nanthagopal, K., Ashok, B., Tamilarasu, A., Johny, A., Mohan, A., 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers. Manag. 146, 8–19. https://doi.org/10.1016/j.enconman.2017.05.021
  194. Nayak, S.K., Nižetić, S., Pham, V.V., Huang, Z., Ölçer, A.I., Bui, V.G., Wattanavichien, K., Hoang, A.T., 2022. Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. J. Clean. Prod. 333, 130160. https://doi.org/10.1016/j.jclepro.2021.130160
  195. Nayak, S.N., Bhasin, C.P., Nayak, M.G., 2019. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew. Energy 143, 1366–1387. https://doi.org/10.1016/j.renene.2019.05.056
  196. Nguyen, T.B.N., Le, N.V.L., 2023. Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. J. Emerg. Sci. Eng. 1, 6–13. https://doi.org/10.61435/jese.2023.2
  197. Nguyen, V.G., Pham, M.T., Le, N.V.L., Le, H.C., Truong, T.H., Cao, D.N., 2023. A comprehensive review on the use of biodiesel for diesel engines. Int. J. Renew. Energy Dev. 12, 720–740. https://doi.org/10.14710/ijred.2023.54612
  198. Nguyen, V.G., Tran, M.H., Paramasivam, P., Le, H.C., Nguyen, D.T., 2024. Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 268–286. https://doi.org/10.18517/ijaseit.14.1.17489
  199. Nguyen, V.N., Nayak, B., Singh, T.J., Nayak, S.K., Cao, D.N., Le, H.C., Nguyen, X.P., 2023a. Investigations on the performance, emission and combustion characteristics of a dual-fuel diesel engine fueled with induced bamboo leaf gaseous fuel and injected mixed biodiesel-diesel blends. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.06.074
  200. Nguyen, V.N., Rudzki, K., Marek, D., Pham, N.D.K., Pham, M.T., Nguyen, P.Q.P., Nguyen, X.P., 2023b. Understanding fuel saving and clean fuel strategies towards green maritime. Polish Marit. Res. 30, 146–164. https://doi.org/10.2478/pomr-2023-0030
  201. Nguyen, X.P., Hoang, A.T., Ölçer, A.I., Huynh, T.T., 2021. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sources, Part A Recover. Util. Environ. Eff. 1–4. https://doi.org/10.1080/15567036.2021.1879969
  202. Nguyen, X.P., Vu, H.N., 2019. Corrosion of the metal parts of diesel engines in biodiesel-based fuels. Int. J. Renew. Energy Dev. 8, 119–132. https://doi.org/10.14710/ijred.8.2.119-132
  203. Nizami, A.-S., Rehan, M., 2018. Towards nanotechnology-based biofuel industry. Biofuel Res. J. 5, 798–799
  204. Oladeji, A.S., Akorede, M.F., Aliyu, S., Mohammed, A.A., Salami, A.W., 2021. Simulation-Based Optimization of Hybrid Renewable Energy System for Off-grid Rural Electrification. Int. J. Renew. Energy Dev. 10. 667-686. https://doi.org/10.14710/ijred.2021.31316
  205. Olszewski, W., Dzida, M., Nguyen, V.G., Cao, D.N., 2023. Reduction of CO 2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels. Polish Marit. Res. 30, 71–80. https://doi.org/10.2478/pomr-2023-0040
  206. Ooi, J.B., Rajanren, J.R., Ismail, H.M., Swamy, V., Wang, X., 2017. Improving combustion characteristics of diesel and biodiesel droplets by graphite oxide addition for diesel engine applications. Int. J. Energy Res. 41, 2258–2267. https://doi.org/10.1002/er.3787
  207. Örs, I., Sarıkoç, S., Atabani, A.E., Ünalan, S., Akansu, S.O., 2018. The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 234, 177–188. https://doi.org/10.1016/j.fuel.2018.07.024
  208. P, M., P, P., Sathyamurthy, R., 2021. Analysis on performance and emission characteristics of corn oil methyl ester blended with diesel and cerium oxide nanoparticle. Case Stud. Therm. Eng. 26, 101077. https://doi.org/https://doi.org/10.1016/j.csite.2021.101077
  209. Pandian, A.K., Ramakrishnan, R.B.B., Devarajan, Y., 2017. Emission analysis on the effect of nanoparticles on neat biodiesel in unmodified diesel engine. Environ. Sci. Pollut. Res. 24, 23273–23278. https://doi.org/10.1007/s11356-017-9973-6
  210. Pandit, C., Banerjee, S., Pandit, S., Lahiri, D., Kumar, V., Chaubey, K.K., Al-Balushi, R., Al-Bahry, S., Joshi, S.J., 2023. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon
  211. Parida, M.K., Mohapatra, P., Patro, S.S., Dash, S., 2020. Effect of TiO 2 nano-additive on performance and emission characteristics of direct injection compression ignition engine fueled with Karanja biodiesel blend. Energy Sources, Part A Recover. Util. Environ. Eff. 1–10. https://doi.org/10.1080/15567036.2020.1756991
  212. Perumal, V., Ilangkumaran, M., 2018. The influence of copper oxide nano particle added pongamia methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel 232, 791–802. https://doi.org/10.1016/j.fuel.2018.04.129
  213. Prabakaran, B., Udhoji, A., 2016. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alexandria Eng. J. https://doi.org/10.1016/j.aej.2016.08.022
  214. Prabakaran, V., Mugunthan, V., Mohamed Yaseen Sharif K, S., Naveen Kumar, R., Nithish, K., 2017. Comparison of Performance, Combustion and Emission Parameter for Copper Oxide Nano Particles Blended with used Vegetable oil Biodiesel in an IC Engine. Int. J. Innov. Res. Sci. Eng. Technol. 6, 1–10
  215. Prabu, A., Premkumar, I.J.I., Pradeep, A., 2019. An assessment on the nanoparticles-dispersed aloe vera biodiesel blends on the performance, combustion and emission characteristics of a DI diesel engine. Arab. J. Sci. Eng. 44, 7457–7463
  216. Praveen, A., Lakshmi Narayana Rao, G., Balakrishna, B., 2018. Performance and emission characteristics of a diesel engine using Calophyllum Inophyllum biodiesel blends with TiO2 nanoadditives and EGR. Egypt. J. Pet. 27, 731–738. https://doi.org/10.1016/j.ejpe.2017.10.008
  217. Priya, Deora, P.S., Verma, Y., Muhal, R.A., Goswami, C., Singh, T., 2022. Biofuels: An alternative to conventional fuel and energy source. Mater. Today Proc. 48, 1178–1184. https://doi.org/10.1016/j.matpr.2021.08.227
  218. Pullagura, G., Bikkavolu, J.R., Vadapalli, S., Siva, P.V.V., Chebattina, K.R.R., Barik, D., Nayyar, A., Sharma, P., Bora, B.J., 2024. Amplifying performance attributes of biodiesel–diesel blends through hydrogen infusion and graphene oxide nanoparticles in a diesel engine. Clean Technol. Environ. Policy 1–23
  219. Qamar, O.A., Jamil, F., Hussain, M., Bae, S., Inayat, A., Shah, N.S., Waris, A., Akhter, P., Kwon, E.E., Park, Y.-K., 2023. Advances in synthesis of TiO2 nanoparticles and their application to biodiesel production: A review. Chem. Eng. J. 460, 141734. https://doi.org/10.1016/j.cej.2023.141734
  220. Radhakrishnan Lawrence, K., Huang, Z., Nguyen, X.P., Balasubramanian, D., Gangula, V.R., Doddipalli, R.R., Le, V.V., Bharathy, S., Hoang, A.T., 2022. Exploration over combined impacts of modified piston bowl geometry and tert-butyl hydroquinone additive-included biodiesel/diesel blend on diesel engine behaviors. Fuel 322, 124206. https://doi.org/10.1016/j.fuel.2022.124206
  221. Radhakrishnan, S., Munuswamy, D.B., Devarajan, Y., Arunkumar, T., Mahalingam, A., 2018. Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources, Part A Recover. Util. Environ. Eff. https://doi.org/10.1080/15567036.2018.1502848
  222. Raheman, H., Padhee, D., 2014. Combustion characteristics of diesel engine using producer gas and blends of Jatropha methyl ester with diesel in mixed fuel mode. Int. J. Renew. Energy Dev. 3, 228–235. https://doi.org/10.14710/ijred.3.3.228-235
  223. Rahman, S.A., Meryandini, A., Juanssilfero, A.B., Fahrurrozi, 2023. Cocoa Pod Husk (CPH) for Biomass on Bioethanol Production. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 828–836. https://doi.org/10.18517/ijaseit.13.3.18794
  224. Rai, M., dos Santos, J.C., Soler, M.F., Franco Marcelino, P.R., Brumano, L.P., Ingle, A.P., Gaikwad, S., Gade, A., da Silva, S.S., 2016. Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol. Rev. 5, 231–250
  225. Ramakrishnan, G., Krishnan, P., Rathinam, S., Thiyagu, R., Devarajan, Y., 2019. Role of nano-additive blended biodiesel on emission characteristics of the research diesel engine. https://doi.org/10.1080/15435075.2019.1577742 16, 435–441
  226. Ranjan, A., Dawn, S.S., Jayaprabakar, J., Nirmala, N., Saikiran, K., Sai Sriram, S., 2018. Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel. https://doi.org/10.1016/j.fuel.2018.02.057
  227. Rastogi, P.M., Sharma, A., Kumar, N., 2021. Effect of CuO nanoparticles concentration on the performance and emission characteristics of the diesel engine running on jojoba (Simmondsia Chinensis) biodiesel. Fuel 286, 119358. https://doi.org/10.1016/j.fuel.2020.119358
  228. Rather, M.A., Bano, P., 2019. Third generation biofuels: a promising alternate energy source. Integr. Green Chem. Sustain. Eng. 1–21
  229. Reddy, S.N., Nanda, S., Sarangi, P.K., 2018. Applications of Supercritical Fluids for Biodiesel Production, in: Recent Advancements in Biofuels and Bioenergy Utilization. Springer Singapore, Singapore, pp. 261–284. https://doi.org/10.1007/978-981-13-1307-3_11
  230. Sadhik Basha, J., 2018. Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine – An experimental investigation. J. Energy Inst. https://doi.org/10.1016/j.joei.2016.11.006
  231. Sajeevan, A.C., Sajith, V., 2013. A study on oxygen storage capacity of zirconium-cerium-oxide nanoparticles. Adv. Mater. Res. 685, 123–127
  232. Salaheldeen, M., Mariod, A.A., Aroua, M.K., Rahman, S.M.A., Soudagar, M.E.M., Fattah, I.M.R., 2021. Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 11, 1121. https://doi.org/10.3390/catal11091121
  233. Sales, M.B., Borges, P.T., Ribeiro Filho, M.N., Miranda da Silva, L.R., Castro, A.P., Sanders Lopes, A.A., Chaves de Lima, R.K., de Sousa Rios, M.A., Santos, J.C.S. dos, 2022. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioengineering 9, 539. https://doi.org/10.3390/bioengineering9100539
  234. Sam Sukumar, R., Maddula, M.R., Gopala Krishna, A., 2020. Experimental investigations with zinc oxide and silver doped zinc oxide nanoparticles for performance and emissions study of biodiesel blends in diesel engine. Int. J. Ambient Energy 1–9. https://doi.org/10.1080/01430750.2020.1795717
  235. Sarıdemir, S., Polat, F., Ağbulut, Ü., 2024. Improvement of worsened diesel and waste biodiesel fuelled-engine characteristics with Hydrogen enrichment: A deep discussion on combustion, performance, and emission analyses. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2024.02.018
  236. Sathish, T., Ağbulut, Ü., George, S.M., Ramesh, K., Saravanan, R., Roberts, K.L., Sharma, P., Asif, M., Hoang, A.T., 2023a. Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy 275, 127397. https://doi.org/10.1016/j.energy.2023.127397
  237. Sathish, T., Ağbulut, Ü., Muthukumar, K., Saravanan, R., Alwetaishi, M., Shaik, S., Saleel, C.A., 2023b. Pore size variation of nano-porous material fixer on the engine bowl and its combined effects on hybrid nano-fuelled CI engine characteristics. Fuel 345, 128149. https://doi.org/10.1016/j.fuel.2023.128149
  238. Saxena, V., Kumar, N., Saxena, V.K., 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renew. Sustain. Energy Rev. 70, 563–588
  239. Selvaganapthy, A., Sundar, A., Kumaragurubaran, B., Gopal, P., 2013. An experimental investigation to study the effects of various nano particles with diesel on DI diesel engine. ARPN J. Sci. Technol. 3, 112–115
  240. Semin, Bakar, R.A., RFC, L.P.A., 2020. Analysis of the Effect of Intake Valve Fin Adding of Dual Fuel Engine on the Performance-Based Experiment. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1939–1945. https://doi.org/10.18517/ijaseit.10.5.6632
  241. Semwal, S., Raj, T., Patel, A.K., Arora, A.K., Badoni, R.P., Singhania, R.R., 2023. Synthesis of Ca–Fe-based heterogeneous catalyst from waste shells and their application for transesterification of Jatropha oil. Syst. Microbiol. Biomanufacturing 3, 681–692. https://doi.org/10.1007/s43393-022-00123-6
  242. Senthilraja, S., Karthikeyan, M., Gangadevi, R., 2010. Nanofluid applications in future automobiles: comprehensive review of existing data. Nano-Micro Lett. 2, 306–310
  243. Serbin, S., Burunsuz, K., Chen, D., Kowalski, J., 2022. Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Marit. Res. 29, 64–76. https://doi.org/10.2478/pomr-2022-0018
  244. Shaafi, T., Sairam, K., Gopinath, A., Kumaresan, G., Velraj, R., 2015. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—a review. Renew. Sustain. Energy Rev. 49, 563–573
  245. Shaafi, T., Velraj, R., 2015. Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions. Renew. Energy 80, 655–663. https://doi.org/10.1016/j.renene.2015.02.042
  246. Sharma, P., Chhillar, A., Said, Z., Huang, Z., Nguyen, V.N., Nguyen, P.Q.P., Nguyen, X.P., 2022. Experimental investigations on efficiency and instability of combustion process in a diesel engine fueled with ternary blends of hydrogen peroxide additive/biodiesel/diesel. Energy Sources, Part A Recover. Util. Environ. Eff. 44, 5929–5950. https://doi.org/10.1080/15567036.2022.2091692
  247. Sharma, P., Sharma, A.K., 2022. Statistical and Continuous Wavelet Transformation-Based Analysis of Combustion Instabilities in a Biodiesel-Fueled Compression Ignition Engine. J. Energy Resour. Technol. 144. https://doi.org/10.1115/1.4051340
  248. Sharma, P., Sharma, A.K., 2021a. AI-Based Prognostic Modeling and Performance Optimization of CI Engine Using Biodiesel-Diesel Blends. Int. J. Renew. Energy Resour. 11, 701–708
  249. Sharma, P., Sharma, A.K., 2021b. Application of Response Surface Methodology for Optimization of Fuel Injection Parameters of a Dual Fuel Engine Fuelled with Producer Gas- Biodiesel blends. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–18. https://doi.org/10.1080/15567036.2021.1892883
  250. Sharma, P., Sharma, A.K., 2020. Experimental Evaluation of Thermal and Combustion Performance of a DI Diesel Engine Using Waste Cooking Oil Methyl Ester and Diesel Fuel Blends, in: Smart Innovation, Systems and Technologies. https://doi.org/10.1007/978-981-15-2647-3_50
  251. Shelare, S.D., Belkhode, P.N., Nikam, K.C., Jathar, L.D., Shahapurkar, K., Soudagar, M.E.M., Veza, I., Khan, T.M.Y., Kalam, M.A., Nizami, A.-S., Rehan, M., 2023. Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production. Energy 282, 128874. https://doi.org/10.1016/j.energy.2023.128874
  252. Shrivastava, N., Shrivastava, D., Shrivastava, V., 2018. Experimental investigation of performance and emission characteristics of diesel engine using Jatropha biodiesel with alumina nanoparticles. Int. J. Green Energy 15, 136–143. https://doi.org/10.1080/15435075.2018.1428807
  253. Silviana, S., Anggoro, D.D., Hadiyanto, H., Salsabila, C.A., Aprilio, K., Utami, A.W., Sa’adah, A.N., Dalanta, F., 2022. A Review on the Recent Breakthrough Methods and Influential Parameters in the Biodiesel Synthesis and Purification. Int. J. Renew. Energy Dev. 11, 1012–1036
  254. Singh, B.R., Singh, O., 2012. Global trends of fossil fuel reserves and climate change in the 21st century. chapter
  255. Singh Pali, H., Sharma, A., Kumar, M., Anand Annakodi, V., Nhanh Nguyen, V., Kumar Singh, N., Singh, Y., Balasubramanian, D., Deepanraj, B., Hai Truong, T., Quy Phong Nguyen, P., 2023. Enhancement of combustion characteristics of waste cooking oil biodiesel using TiO2 nanofluid blends through RSM. Fuel 331, 125681. https://doi.org/10.1016/j.fuel.2022.125681
  256. Siregar, K., 2015. Strategy to Reduce GHG Emission and Energy Consumption at Process Production of Biodiesel Using Catalyst From Crude Palm Oil (CPO) and Crude Jatropha Curcas Oil (CJCO) in Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 5, 293–299
  257. Sitompul, R.F., Sinaga, D.A.P., 2020. Sustainability Approach of Site Selection for Renewables Deployment in Indonesian Rural Electrical Grids. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2518–2525. https://doi.org/10.18517/ijaseit.10.6.13762
  258. Sivakumar, M., Shanmuga Sundaram, N., Ramesh kumar, R., Syed Thasthagir, M.H., 2018. Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine. Renew. Energy. https://doi.org/10.1016/j.renene.2017.10.002
  259. Soudagar, M.E.M., Banapurmath, N.R., Afzal, A., Hossain, N., Abbas, M.M., Haniffa, M.A.C.M., Naik, B., Ahmed, W., Nizamuddin, S., Mubarak, N.M., 2020. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel–diesel fuel blend. Sci. Rep. 10, 1–17
  260. Soudagar, M.E.M., Mujtaba, M.A., Safaei, M.R., Afzal, A., V, D.R., Ahmed, W., Banapurmath, N.R., Hossain, N., Bashir, S., Badruddin, I.A., Goodarzi, M., Shahapurkar, K., Taqui, S.N., 2021. Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy 215, 119094. https://doi.org/10.1016/j.energy.2020.119094
  261. Soudagar, M.E.M., Nik-Ghazali, N.N., Abul Kalam, M., Badruddin, I.A., Banapurmath, N.R., Akram, N., 2018. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Convers. Manag. https://doi.org/10.1016/j.enconman.2018.10.019
  262. Soukht Saraee, H., Jafarmadar, S., Alizadeh-Haghighi, E., Ashrafi, S.J., 2016. Experimental investigation of pollution and fuel consumption on a CI engine operated on alumina nanoparticles-Diesel fuel with the aid of artificial neural network. Environ. Prog. Sustain. Energy 35, 540–546. https://doi.org/10.1002/ep.12233
  263. Soulayman, S., Ola, D., 2019. Synthesis parameters of biodiesel from frying oils wastes. Int. J. Renew. Energy Dev. 8, 33–39. https://doi.org/10.14710/ijred.8.1.33-39
  264. Srinidhi, C., Madhusudhan, A., Channapattana, S. V., 2019. Effect of NiO nanoparticles on performance and emission characteristics at various injection timings using biodiesel-diesel blends. Fuel 235, 185–193. https://doi.org/10.1016/j.fuel.2018.07.067
  265. Srinivasan, S.K., Kuppusamy, R., Krishnan, P., 2021. Effect of nanoparticle-blended biodiesel mixtures on diesel engine performance, emission, and combustion characteristics. Environ. Sci. Pollut. Res. 28, 39210–39226
  266. Stelmasiak, Z., Larisch, J., Pielecha, J., Pietras, D., 2017. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas. Polish Marit. Res. 24, 96–104. https://doi.org/10.1515/pomr-2017-0055
  267. Suhel, A., Abdul Rahim, N., Abdul Rahman, M.R., Bin Ahmad, K.A., 2021. Engine’s behaviour on magnetite nanoparticles as additive and hydrogen addition of chicken fat methyl ester fuelled DICI engine: A dual fuel approach. Int. J. Hydrogen Energy 46, 14824–14843. https://doi.org/10.1016/j.ijhydene.2021.01.219
  268. Tamilvanan, A., Balamurugan, K., Vijayakumar, M., 2019. Effects of nano-copper additive on performance, combustion and emission characteristics of Calophyllum inophyllum biodiesel in CI engine. J. Therm. Anal. Calorim. 136, 317–330. https://doi.org/10.1007/s10973-018-7743-4
  269. Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S., Lin, L., 2019. Catalysis in biodiesel production—a review. Clean Energy 3, 2–23
  270. Tran‐Nguyen, P.L., Ong, L.K., Go, A.W., Ju, Y., Angkawijaya, A.E., 2020. Non‐catalytic and heterogeneous acid/base‐catalyzed biodiesel production: Recent and future developments. Asia-Pacific J. Chem. Eng. 15. https://doi.org/10.1002/apj.2490
  271. Tran, V.D., Sharma, P., Nguyen, L.H., 2023. Digital twins for internal combustion engines: A brief review. J. Emerg. Sci. Eng. 1, 29–35. https://doi.org/10.61435/jese.2023.5
  272. Trirahayu, D.A., Abidin, A.Z., Putra, R.P., Hidayat, A.S., Safitri, E., Perdana, M.I., 2022. Process Simulation and Design Considerations for Biodiesel Production from Rubber Seed Oil. Fuels 3, 563–579. https://doi.org/10.3390/fuels3040034
  273. Truong, T.T., Nguyen, X.P., Pham, V.V., Le, V.V., Le, A.T., Bui, V.T., 2021. Effect of alcohol additives on diesel engine performance: a review. Energy Sources, Part A Recover. Util. Environ. Eff. 1–25. https://doi.org/10.1080/15567036.2021.2011490
  274. Tuan Hoang, A., Nižetić, S., Chyuan Ong, H., Tarelko, W., Viet Pham, V., Hieu Le, T., Quang Chau, M., Phuong Nguyen, X., 2021. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustain. Energy Technol. Assessments 47, 101416. https://doi.org/10.1016/j.seta.2021.101416
  275. Ungwiwatkul, S., Chantarasiri, A., 2022. Study on the Potential for Biodiesel Production of Microalgal Consortia from Brackish Water Environment in Rayong Province, Thailand. Int. J. Renew. Energy Dev. 11, 1060–1067
  276. Usman, M., Cheng, S., Cross, J.S., 2022. Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review. Int. J. Renew. Energy Dev. 11
  277. Vairamuthu, G., Sundarapandian, S., Kailasanathan, C., Thangagiri, B., 2016. Experimental investigation on the effects of cerium oxide nanoparticle on Calophyllum inophyllum (Punnai) biodiesel blended with diesel fuel in DI diesel engine modified by nozzle geometry. J. Energy Inst. https://doi.org/10.1016/j.joei.2015.05.005
  278. Vani, M.V., Basha, P.O., Rajesh, N., Riazunnisa, K., 2023. Development of Chlorella pyrenoidosa EMS mutants with enhanced biomass and lipid content for biofuel production. Syst. Microbiol. Biomanufacturing 3, 693–701. https://doi.org/10.1007/s43393-022-00153-0
  279. Vasić, K., Hojnik Podrepšek, G., Knez, Ž., Leitgeb, M., 2020. Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides. Catalysts 10, 237. https://doi.org/10.3390/catal10020237
  280. Venu, H., Appavu, P., 2020. Al2O3 nano additives blended Polanga biodiesel as a potential alternative fuel for existing unmodified DI diesel engine. Fuel 279, 118518
  281. Venu, H., Appavu, P., M, V.R., Jayaraman, J., 2022. Influence of nanoparticles on emission and performance characteristics of biodiesel-diesel blends in a DI diesel engine. Aust. J. Mech. Eng. 1–16. https://doi.org/10.1080/14484846.2022.2098574
  282. Venu, H., Madhavan, V., 2016. Effect of Al 2 O 3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: Performance, combustion and emission characteristics. Fuel 186, 176–189. https://doi.org/10.1016/j.fuel.2016.08.046
  283. Venu, H., Raju, V.D., Lingesan, S., Elahi M Soudagar, M., 2021. Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics. Energy 215, 119091. https://doi.org/10.1016/j.energy.2020.119091
  284. Venugopal, I.P., Balasubramanian, D., Rajarajan, A., 2021. Potential improvement in conventional diesel combustion mode on a common rail direct injection diesel engine with PODE/WCO blend as a high reactive fuel to achieve effective Soot-NOx trade-off. J. Clean. Prod. 327, 129495. https://doi.org/10.1016/j.jclepro.2021.129495
  285. Veza, I., Karaoglan, A.D., Ileri, E., Kaulani, S.A., Tamaldin, N., Latiff, Z.A., Muhamad Said, M.F., Hoang, A.T., Yatish, K.V., Idris, M., 2022. Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends. Case Stud. Therm. Eng. 31, 101817. https://doi.org/10.1016/j.csite.2022.101817
  286. Villegas, J.F., Ochoa, G.V., Chamorro, M.V., 2020. Statistical Wind Energy Analysis and Wind Persistence Assessment for Cordoba And Sucre Departments’ Weather Stations in The Caribbean Region of Colombia. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1760–1766. https://doi.org/10.18517/ijaseit.10.5.6567
  287. Vuong, H.L., Nguyen, D.C., Truong, T.H., Le, H.C., Nguyen, M.N., 2022. Laminar Flame Characteristics of 2,5-Dimethylfuran (DMF) Biofuel: A Comparative Review with Ethanol and Gasoline. Int. J. Renew. Energy Dev. 11, 237–254. https://doi.org/10.14710/ijred.2022.42611
  288. Wambui, T., Hawi, M., Njoka, F., Kamau, J., 2023. Performance enhancement and emissions reduction in a diesel engine using oleander and croton biodiesel doped with graphene nanoparticles. Int. J. Renew. Energy Dev. 12, 635–647. https://doi.org/10.14710/ijred.2023.51785
  289. Wang, H., Peng, X., Zhang, H., Yang, S., Li, H., 2021. Microorganisms-promoted biodiesel production from biomass: A review. Energy Convers. Manag. X 12, 100137
  290. Wang, S., Yao, L., 2020. Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine. Polish Marit. Res. 27, 85–95. https://doi.org/10.2478/pomr-2020-0030
  291. Yadav, B., Yellapu, S.K., Adjallé, K., Drogui, P., Tyagi, R.D., 2021. Comparative study on production and characterisation of extracellular polymeric substances (EPS) using activated sludge fortified with crude glycerol from different biodiesel companies. Syst. Microbiol. Biomanufacturing 1, 208–222. https://doi.org/10.1007/s43393-020-00017-5
  292. Yang, X.-X., Wang, Y.-T., Yang, Y.-T., Feng, E.-Z., Luo, J., Zhang, F., Yang, W.-J., Bao, G.-R., 2018. Catalytic transesterification to biodiesel at room temperature over several solid bases. Energy Convers. Manag. 164, 112–121. https://doi.org/10.1016/j.enconman.2018.02.085
  293. Yang, Z., Tan, Q., Geng, P., 2019. Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel. Polish Marit. Res. 26, 153–161. https://doi.org/10.2478/pomr-2019-0017
  294. Yaqoob, A.A., Umar, K., Ibrahim, M.N.M., 2020. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl. Nanosci. 10, 1369–1378
  295. Yaqoob, H., Teoh, Y.H., Jamil, M.A., Gulzar, M., 2021. Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. J. Energy Inst. 96, 205–221. https://doi.org/10.1016/j.joei.2021.03.002
  296. Yoro, K.O., Daramola, M.O., 2020. CO2 emission sources, greenhouse gases, and the global warming effect, in: Advances in Carbon Capture. Elsevier, pp. 3–28
  297. Yusof, S.N.A., Sidik, N.A.C., Asako, Y., Japar, W.M.A.A., Mohamed, S.B., Muhammad, N.M., 2020. A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnol. Rev. 9, 1326–1349. https://doi.org/10.1515/ntrev-2020-0104
  298. Yusuf, A.A., Ampah, J.D., Soudagar, M.E.M., Veza, I., Kingsley, U., Afrane, S., Jin, C., Liu, H., Elfasakhany, A., Buyondo, K.A., 2022a. Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: Environmental and health risks of plastic wa. Energy Convers. Manag. 264, 115758
  299. Yusuf, A.A., Dandakouta, H., Yahuza, I., Yusuf, D.A., Mujtaba, M.A., El-Shafay, A.S., Soudagar, M.E.M., 2022b. Effect of low CeO2 nanoparticles dosage in biodiesel-blends on combustion parameters and toxic pollutants from common-rail diesel engine. Atmos. Pollut. Res. 13, 101305. https://doi.org/10.1016/j.apr.2021.101305
  300. Yuvenda, D., Sudarmanta, B., Wahjudi, A., Hirowati, R.A., 2022. Effect of Adding Combustion Air on Emission in a Diesel Dual-Fuel Engine with Crude Palm Oil Biodiesel Compressed Natural Gas Fuels. Int. J. Renew. Energy Dev. 11, 871–877. https://doi.org/10.14710/ijred.2022.41275
  301. Zeńczak, W., Gromadzińska, A.K., 2020. Preliminary Analysis of the Use of Solid Biofuels in a Ship’s Power System. Polish Marit. Res. 27, 67–79. https://doi.org/10.2478/pomr-2020-0067
  302. Zhang, X., Yang, R., Anburajan, P., Le, Q. Van, Alsehli, M., Xia, C., Brindhadevi, K., 2022. Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics. Fuel 307, 121780. https://doi.org/10.1016/j.fuel.2021.121780
  303. Zhao, R., Xu, L., Su, X., Feng, S., Li, C., Tan, Q., Wang, Z., 2020. A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines. Polish Marit. Res. 27, 80–90. https://doi.org/10.2478/pomr-2020-0068
  304. Zhong, L., Feng, Y., Wang, G., Wang, Z., Bilal, M., Lv, H., Jia, S., Cui, J., 2020. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 152, 207–222. https://doi.org/10.1016/j.ijbiomac.2020.02.258

Last update:

No citation recorded.

Last update: 2024-05-16 19:21:58

No citation recorded.