skip to main content

Nanotechnology-based biodiesel: A comprehensive review on production, and utilization in diesel engine as a substitute of diesel fuel

1Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam

2Faculty of Automotive Engineering, Dong A University, Danang, Viet Nam

3Vietnam Oil and Gas Group, Hanoi, Viet Nam

4 Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

5 PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

6 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India

View all affiliations
Received: 16 Jan 2024; Revised: 1 Mar 2024; Accepted: 15 Mar 2024; Available online: 29 Mar 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

As a sustainable replacement for fossil fuels, biodiesel is a game-changer in the energy sector. There is no strategy to minimize biodiesel's significance as a sustainable, clean fuel source in light of the increasing climate change and environmental sustainability concerns. Nevertheless, conventional biodiesel production methods often run into problems like inadequate conversion efficiency and inappropriate fuel properties, which impede their broad adoption. The revolutionary potential of nanotechnology to circumvent these limitations and revolutionize biodiesel consumption and production is explored in this review paper. There are new possibilities for improving biodiesel output and engine efficiency, thanks to nanotechnology, which can alter matter at the atomic and molecular levels. Using nano-catalysts, nano-emulsification processes, and nano-encapsulation procedures, researchers have made significant advances in improving biodiesel qualities such as stability, combustion efficiency, and viscosity. Through a comprehensive analysis of current literature and research data, this article elucidates the crucial role of nanotechnology in advancing biodiesel technology. By shedding light on the most current advancements, challenges, and potential future outcomes in nano-based biodiesel manufacturing and consumption, this review hopes to add to the growing corpus of knowledge in the field and inspire additional innovation. In conclusion, there is great hope for a sustainable energy future, increased economic growth, and reduced environmental impacts through the application of nanotechnology.  

Fulltext View|Download
Keywords: Biodiesel; Alternative fuels; Sustainability; Circular economy; Nanotechnology; Engine performance; Emission characteristic

Article Metrics:

  1. Aalam, C.S., Saravanan, C.G., 2017. Effects of nano metal oxide blended Mahua biodiesel on CRDI diesel engine. Ain Shams Eng. J.
  2. Abdullah, N.R., Shahruddin, N.S., Mamat, R., Ihsan Mamat, A.M., Zulkifli, A., 2014. Effects of Air Intake Pressure on the Engine Performance, Fuel Economy and Exhaust Emissions of A Small Gasoline Engine. J. Mech. Eng. Sci. 6, 949–958.
  3. Adam, A., Ramlan, N.A., Jaharudin, N.F., Hamzah, H., Othman, M.F., Mrwan, A.A.G., 2017. Analysis of combustion characteristics, engine performance and exhaust emissions of diesel engine fueled with upgraded waste source fuel. Int. J. Hydrogen Energy 42, 17993–18004.
  4. Ağbulut, Ü., Karagöz, M., Sarıdemir, S., Öztürk, A., 2020. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel 270, 117521
  5. Ağbulut, Ü., Sarıdemir, S., Rajak, U., Polat, F., Afzal, A., Verma, T.N., 2021. Effects of high-dosage copper oxide nanoparticles addition in diesel fuel on engine characteristics. Energy 229, 120611.
  6. Ahmed, S.F., Debnath, J.C., Mehejabin, F., Islam, N., Tripura, R., Mofijur, M., Hoang, A.T., Rasuld, M.G., Dai-Viet N. Vo, 2023. Utilization of nanomaterials in accelerating the production process of sustainable biofuels. Sustain. Energy Technol. Assessments 55, 102894.
  7. Aisman, Santosa, Hadiguna, R.A., Nazir, N., 2020. Design of Sustainable Agricultural-Based Biomass Electrification Model in the Islands Area: Prospect of Bamboo Biomass. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2145–2151.
  8. Akubude, V.C., Nwaigwe, K.N., Dintwa, E., 2019. Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Mater. Sci. Energy Technol. 2, 216–225
  9. Al-Zaban, M.I., Abd El-Aziz, A.R.M., 2024. Production of biodiesel from A spergillus terreus KC462061 using gold-silver nanocatalyst. Green Chem. Lett. Rev. 17.
  10. Al‐Zaban, M.I., AlHarbi, M.A., Mahmoud, M.A., Bahatheq, A.M., 2022. Production of biodiesel from oleaginous fungal lipid using highly catalytic bimetallic gold‐silver core‐shell nanoparticle. J. Appl. Microbiol. 132, 381–389.
  11. Anitescu, G., Bruno, T.J., 2012. Fluid properties needed in supercritical transesterification of triglyceride feedstocks to biodiesel fuels for efficient and clean combustion – A review. J. Supercrit. Fluids 63, 133–149.
  12. Annamalai, M., Dhinesh, B., Nanthagopal, K., SivaramaKrishnan, P., Isaac JoshuaRamesh Lalvani, J., Parthasarathy, M., Annamalai, K., 2016. An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy Convers. Manag.
  13. Arumugam, A., Ponnusami, V., 2019. Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renew. Energy 131, 459–471
  14. Ashok, B., Nanthagopal, K., Mohan, A., Johny, A., Tamilarasu, A., 2017. Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine. Energy.
  15. Atarod, P., Khlaife, E., Aghbashlo, M., Tabatabaei, M., Hoang, A.T., Mobli, H., Nadian, M.H., Hosseinzadeh-Bandbafha, H., Mohammadi, P., Roodbar Shojaei, T., Mahian, O., Gu, H., Peng, W., Lam, S.S., 2021. Soft computing-based modeling and emission control/reduction of a diesel engine fueled with carbon nanoparticle-dosed water/diesel ‎emulsion fuel. J. Hazard. Mater. 407, 124369.
  16. Atasoy, V.E., Suzer, A.E., Ekici, S., 2022. A Comparative Analysis of Exhaust Gas Temperature Based on Machine Learning Models for Aviation Applications. J. Energy Resour. Technol. 144.
  17. Ataya, F., Dubé, M.A., Ternan, M., 2007. Acid-Catalyzed Transesterification of Canola Oil to Biodiesel under Single- and Two-Phase Reaction Conditions. Energy & Fuels 21, 2450–2459.
  18. Attia, A.M.A., El-Seesy, A.I., El-Batsh, H.M., Shehata, M.S., 2014. Effects of Alumina Nanoparticles Additives Into Jojoba Methyl Ester-Diesel Mixture on Diesel Engine Performance, in: Volume 6B: Energy. American Society of Mechanical Engineers.
  19. Babatunde, K.A., Salam, K.K., Aworanti, O.A., Olu-Arotiowa, O.A., Alagbe, S.O., Oluwole, T.D., 2022. Transesterification of castor oil: neuro-fuzzy modelling, uncertainty quantification and optimization study. Syst. Microbiol. Biomanufacturing.
  20. Bakır, H., Ağbulut, Ü., Gürel, A.E., Yıldız, G., Güvenç, U., Soudagar, M.E.M., Hoang, A.T., Deepanraj, B., Saini, G., Afzal, A., 2022. Forecasting of future greenhouse gas emission trajectory for India using energy and economic indexes with various metaheuristic algorithms. J. Clean. Prod. 360, 131946.
  21. Balaji, G., Cheralathan, M., 2017. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection Diesel engine. Therm. Sci. 21, 499–510
  22. Balasubramanian, D., Kamaraj, S., Krishnamoorthy, R., 2020. Synthesis of Biodiesel from Waste Cooking Oil by Alkali Doped Calcinated Waste Egg Shell Powder Catalyst and Optimization of Process Parameters to Improve Biodiesel Conversion. WCX SAE World Congress Experience.
  23. Balasubramanian, D., Papla Venugopal, I., Viswanathan, K., 2019. Characteristics Investigation on Di Diesel Engine with Nano-Particles as an Additive in Lemon Grass Oil.
  24. Balasubramanian, D., Wongwuttanasatian, T., Venugopal, I.P., Rajarajan, A., 2022. Exploration of combustion behavior in a compression ignition engine fuelled with low-viscous Pimpinella anisum and waste cooking oil biodiesel blends. J. Clean. Prod. 331, 129999
  25. Barboza, A.B. V., Dinesha, P., Rosen, M.A., 2023. Effect of green fuel and green lubricant with metallic nanoparticles on emissions of HC, CO, NOx, and smoke for a compression ignition engine. Environ. Sci. Pollut. Res. 30, 91344–91354.
  26. Basha, J.S., Al Balushi, M., Soudagar, M.E.M., Safaei, M.R., Mujtaba, M.A., Khan, T.M.Y., Hossain, N., Elfasakhany, A., 2022. Applications of nano-additives in internal combustion engines: a critical review. J. Therm. Anal. Calorim. 147, 9383–9403
  27. Basha, J.S., Anand, R., 2011. Effects of alumina nanoparticles blended jatropha biodiesel fuel on working characteristics of a diesel engine. Int. J. Ind. Engg. Tech 53–62
  28. Basha, S.A., Raja Gopal, K., 2012. A review of the effects of catalyst and additive on biodiesel production, performance, combustion and emission characteristics. Renew. Sustain. Energy Rev. 16, 711–717.
  29. Bello, M.O., Solarin, S.A., 2022. Searching for sustainable electricity generation: The possibility of substituting coal and natural gas with clean energy. Energy Environ. 33, 64–84.
  30. Bhagat, R., Panakkal, H., Gupta, I., Ingle, A.P., 2021. Carbon‐Based Nanocatalysts in Biodiesel Production, in: Nano‐ and Biocatalysts for Biodiesel Production. Wiley, pp. 157–181.
  31. Bhattacharya, S., Seth, A., 2023. Application of Nanotechnology for Eco-Friendly and Sustainable Economic Development, in: Diversity and Applications of New Age Nanoparticles. IGI Global, pp. 1–24
  32. Bidir, M.G., Millerjothi, N.K., Adaramola, M.S., Hagos, F.Y., 2021. The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. Energy Reports 7, 3614–3627.
  33. Bin Rashid, A., 2023. Utilization of nanotechnology and nanomaterials in biodiesel production and property enhancement. J. Nanomater. 2023, 1–14
  34. Bitire, S.O., Nwanna, E.C., Jen, T.-C., 2023. The impact of CuO nanoparticles as fuel additives in biodiesel-blend fuelled diesel engine: A review. Energy Environ. 34, 2259–2289
  35. Bora, B.J., Dai Tran, T., Prasad Shadangi, K., Sharma, P., Said, Z., Kalita, P., Buradi, A., Nhanh Nguyen, V., Niyas, H., Tuan Pham, M., Thanh Nguyen Le, C., Dung Tran, V., Phuong Nguyen, X., 2022. Improving combustion and emission characteristics of a biogas/biodiesel-powered dual-fuel diesel engine through trade-off analysis of operation parameters using response surface methodology. Sustain. Energy Technol. Assessments 53, 102455.
  36. Bortnowska, M., 2009. Development of new technologies for shipping natural gas by sea. Polish Marit. Res. 16, 70–78.
  37. Brask, J., Damstrup, M.L., Nielsen, P.M., Holm, H.C., Maes, J., De Greyt, W., 2011. Combining Enzymatic Esterification with Conventional Alkaline Transesterification in an Integrated Biodiesel Process. Appl. Biochem. Biotechnol. 163, 918–927.
  38. Bui, T.T., Luu, H.Q., Hoang, A.T., Konur, O., Huu, T., Pham, M.T., 2022. A review on ignition delay times of 2,5-Dimethylfuran. Energy Sources, Part A Recover. Util. Environ. Eff. 44, 7160–7175.
  39. Bui, V.G., Tu Bui, T.M., Ong, H.C., Nižetić, S., Bui, V.H., Xuan Nguyen, T.T., Atabani, A.E., Štěpanec, L., Phu Pham, L.H., Hoang, A.T., 2022. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy 252, 124052.
  40. Calam, A., Solmaz, H., Yılmaz, E., İçingür, Y., 2019. Investigation of effect of compression ratio on combustion and exhaust emissions in A HCCI engine. Energy 168, 1208–1216.
  41. Chandrasekaran, V., Arthanarisamy, M., Nachiappan, P., Dhanakotti, S., Moorthy, B., 2016. The role of nano additives for biodiesel and diesel blended transportation fuels. Transp. Res. Part D Transp. Environ. 46, 145–156.
  42. Changxiong, L., Hu, Y., Yang, Z., Guo, H., 2023. Experimental Study of Fuel Combustion and Emission Characteristics of Marine Diesel Engines Using Advanced Fuels. Polish Marit. Res. 30, 48–58.
  43. Channappagoudra, M., Channappagoudra, M., 2021. Effect of copper oxide nanoadditive on diesel engine performance operated with dairy scum biodiesel Effect of copper oxide nanoadditive on diesel engine performance operated with dairy scum biodiesel. Int. J. Ambient Energy 42, 530–539.
  44. Chellapandi, P., Saranya, S., 2023. Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Syst. Microbiol. Biomanufacturing.
  45. Chen, L., Msigwa, G., Yang, M., Osman, A.I., Fawzy, S., Rooney, D.W., Yap, P.-S., 2022. Strategies to achieve a carbon neutral society: a review. Environ. Chem. Lett. 20, 2277–2310.
  46. Chen, S.-Y., Chang, A., Rungsi, A.N., Attanatho, L., Chang, C.-L., Pan, J.-H., Suemanotham, A., Mochizuki, T., Takagi, H., Yang, C.-M., Luengnaruemitchai, A., Chou, H.-H., 2020. Superficial Pd nanoparticles supported on carbonaceous SBA-15 as efficient hydrotreating catalyst for upgrading biodiesel fuel. Appl. Catal. A Gen. 602, 117707.
  47. Cherwoo, L., Gupta, I., Flora, G., Verma, R., Kapil, M., Arya, S.K., Ravindran, B., Khoo, K.S., Bhatia, S.K., Chang, S.W., Ngamcharussrivichai, C., Ashokkumar, V., 2023. Biofuels an alternative to traditional fossil fuels: A comprehensive review. Sustain. Energy Technol. Assessments 60, 103503.
  48. Das, A., Gajghate, S.S., Das, S., Ghatak, M. Das, 2024. An Experimental Investigation on Performances and Emission Characteristics in a Multi-Cylinder Diesel Engine Using Nahar Oil Biodiesel Blended With Carbon Nano Tube. Heat Transf. Eng. 1–12
  49. Das, S., Kashyap, D., Kalita, P., Kulkarni, V., Itaya, Y., 2020. Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India. Renew. Sustain. Energy Rev.
  50. Dasta, P., Pratap Singh, Atul, Pratap Singh, Ashish, 2022. Zinc oxide nanoparticle as a heterogeneous catalyst in generation of biodiesel. Mater. Today Proc. 52, 751–757.
  51. Debbarma, S., Misra, R.D., 2018. Effects of iron nanoparticle fuel additive on the performance and exhaust emissions of a compression ignition engine fueled with diesel and biodiesel. J. Therm. Sci. Eng. Appl.
  52. Debbarma, S., Misra, R.D., 2017. Effects of Iron Nanoparticles Blended Biodiesel on the Performance and Emission Characteristics of a Diesel Engine. J. Energy Resour. Technol. 139.
  53. Deepak Kumar, T., Sameer Hussain, S., Ramesha, D.K., 2020. Effect of a zinc oxide nanoparticle fuel additive on the performance and emission characteristics of a CI engine fuelled with cotton seed biodiesel blends. Mater. Today Proc. 26, 2374–2378.
  54. Deheri, C., Acharya, S.K., Thatoi, D.N., Mohanty, A.P., 2020. A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel 260, 116337.
  55. Dehhaghi, M., Kazemi Shariat Panahi, H., Aghbashlo, M., Lam, S.S., Tabatabaei, M., 2021. The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts. Energy 225, 120259.
  56. Desniorita, Nazir, N., Novelina, Sayuti, K., 2019. Sustainable design of biorefinery processes on cocoa pod: Optimization of pectin extraction process with variations of pH, temperature, and time. Int. J. Adv. Sci. Eng. Inf. Technol. 9, 2104–2113.
  57. Devarajan, Y., Mahalingam, A., Munuswamy, D.B., Arunkumar, T., 2018. Combustion, performance, and emission study of a research diesel engine fueled with palm oil biodiesel and its additive. Energy & Fuels 32, 8447–8452
  58. Devarajan, Y., Nagappan, B., Subbiah, G., 2019. A comprehensive study on emission and performance characteristics of a diesel engine fueled with nanoparticle-blended biodiesel. Environ. Sci. Pollut. Res. 26, 10662–10672
  59. Dhahad, H.A., Chaichan, M.T., 2020. The impact of adding nano-Al2O3 and nano-ZnO to Iraqi diesel fuel in terms of compression ignition engines’ performance and emitted pollutants. Therm. Sci. Eng. Prog. 18, 100535.
  60. Dharmaprabhakaran, T., Karthikeyan, S., Periyasamy, M., Mahendran, G., 2020. Emission analysis of CuO2 nanoparticle addition with blend of Botryococcus braunii algae biodiesel on CI engine. Mater. Today Proc. 33, 2897–2900.
  61. Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E., 2008. Heterogeneous catalysts for biodiesel production. Energy & Fuels 22, 207–217
  62. Doan, Q.B., Nguyen, X.P., Dong, T.M.H., Pham, M.T., Le, T.S., 2022. Performance and emission characteristics of diesel engine using ether additives: A review. Int. J. Renew. Energy Dev. 11, 255–274
  63. Dong, V.H., Sharma, P., 2023. Optimized conversion of waste vegetable oil to biofuel with Meta heuristic methods and design of experiments. J. Emerg. Sci. Eng. 1, 22–28.
  64. El-Adawy, M., Ismael, M.A., Dalha, I.B., Aziz, A.R.A., El Maghlany, W., 2023. Unveiling the status of emulsified water-in-diesel and nanoparticles on diesel engine attributes. Case Stud. Therm. Eng. 44, 102824.
  65. El-Seesy, A.I., Attia, A.M.A., El-Batsh, H.M., 2018. The effect of Aluminum oxide nanoparticles addition with Jojoba methyl ester-diesel fuel blend on a diesel engine performance, combustion and emission characteristics. Fuel 224, 147–166.
  66. EL-Seesy, A.I., Hassan, H., 2019. Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance. Renew. Energy 132, 558–574.
  67. EL-Seesy, A.I., Hassan, H., He, Z., Ookawara, S., 2020. Improving diesel engine performance using carbon nanomaterials, in: Carbon Nanomaterials for Agri-Food and Environmental Applications. Elsevier, pp. 77–103
  68. Elma, M., Suhendra, S.A., Wahyuddin, W., Saputri, W., Utami, S.A.A., 2017. Optimum Ratio Between Waste Cooking Oil and Coconut Oilas Raw Material for Biodiesel Production. Int. J. Adv. Sci. Eng. Inf. Technol. 7, 1227–1233
  69. Elumalai, P. V., Dhinesh, B., Jayakar, J., Nambiraj, M., Hariharan, V., 2021. Effects of antioxidants to reduce the harmful pollutants from diesel engine using preheated palm oil–diesel blend. J. Therm. Anal. Calorim.
  70. Esmaeili, H., Nourafkan, E., Nakisa, M., Ahmed, W., 2021. Application of nanotechnology for biofuel production, in: Emerging Nanotechnologies for Renewable Energy. Elsevier, pp. 149–172.
  71. Ettefaghi, E., Ghobadian, B., Rashidi, A., Najafi, G., Khoshtaghaza, M.H., Rashtchi, M., Sadeghian, S., 2018. A novel bio-nano emulsion fuel based on biodegradable nanoparticles to improve diesel engines performance and reduce exhaust emissions. Renew. Energy.
  72. Fayad, M.A., Abed, A.M., Omran, S.H., Jaber, A.A., Radhi, A.A., Dhahad, H.A., Chaichan, M.T., Yusaf, T., 2022. Influence of Renewable Fuels and Nanoparticles Additives on Engine Performance and Soot Nanoparticles Characteristics. Int. J. Renew. Energy Dev. 11, 1068–1077.
  73. Fayad, M.A., Sobhi, M., Chaichan, M.T., Badawy, T., Abdul-Lateef, W.E., Dhahad, H.A., Yusaf, T., Isahak, W.N.R.W., Takriff, M.S., Al-Amiery, A.A., 2023. Reducing soot nanoparticles and NOX emissions in CRDI diesel engine by incorporating TiO2 nano-additives into biodiesel blends and using high rate of EGR. Energies 16, 3921
  74. Fayaz, H., Mujtaba, M.A., Soudagar, M.E.M., Razzaq, L., Nawaz, S., Nawaz, M.A., Farooq, M., Afzal, A., Ahmed, W., Khan, T.M.Y., Bashir, S., Yaqoob, H., EL-Seesy, A.I., Wageh, S., Al-Ghamdi, A., Elfasakhany, A., 2021. Collective effect of ternary nano fuel blends on the diesel engine performance and emissions characteristics. Fuel 293, 120420.
  75. Fernández, I.A., Gómez, M.R., Gómez, J.R., López-González, L.M., 2020a. Generation of H 2 on Board Lng Vessels for Consumption in the Propulsion System. Polish Marit. Res. 27, 83–95.
  76. Fernández, I.A., Gómez, M.R., Gómez, J.R., López-González, L.M., 2020b. Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System. Polish Marit. Res. 27, 83–95.
  77. Feroskhan, M., Ismail, S., Gosavi, S., Tankhiwale, P., Khan, Y., 2019. Optimization of performance and emissions in a biogas–diesel dual fuel engine with cerium oxide nanoparticle addition. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
  78. Fiore, M., Magi, V., Viggiano, A., 2020. Internal combustion engines powered by syngas: A review. Appl. Energy 276, 115415.
  79. Flamarz Al-Arkawazi, S.A., 2019. The gasoline fuel quality impact on fuel consumption, air-fuel ratio (AFR), lambda (λ) and exhaust emissions of gasoline-fueled vehicles. Cogent Eng. 6, 1616866.
  80. Gad, M.S., Ağbulut, Ü., Afzal, A., Panchal, H., Jayaraj, S., Qasem, N.A.., El-Shafay, A.S., 2023. A comprehensive review on the usage of the nano-sized particles along with diesel/biofuel blends and their impacts on engine behaviors. Fuel 339, 127364.
  81. Ganesan, S., Padmanabhan, S., Mahalingam, S., Shanjeevi, C., 2020. Environmental impact of VCR diesel engine characteristics using blends of cottonseed oil with nano additives. Energy Sources, Part A Recover. Util. Environ. Eff. 42, 761–772.
  82. Gavhane, R.S., Kate, A.M., Pawar, A., Soudagar, M.E.M., Fayaz, H., 2020. Effect of Soybean biodiesel and Copper coated Zinc oxide Nanoparticles on Enhancement of Diesel Engine Characteristics. Energy Sources, Part A Recover. Util. Environ. Eff.
  83. Gavhane, R.S., Kate, A.M., Soudagar, M.E.M., Wakchaure, V.D., Balgude, S., Rizwanul Fattah, I.M., Nik-Ghazali, N.-N., Fayaz, H., Khan, T.M.Y., Mujtaba, M.A., Kumar, R., Shahabuddin, M., 2021. Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine. Energies 14, 1489.
  84. Gharehghani, A., Asiaei, S., Khalife, E., Najafi, B., Tabatabaei, M., 2019. Simultaneous reduction of CO and NOx emissions as well as fuel consumption by using water and nano particles in Diesel–Biodiesel blend. J. Clean. Prod.
  85. Ghojel, J., Honnery, D., Al-Khaleefi, K., 2006. Performance, emissions and heat release characteristics of direct injection diesel engine operating on diesel oil emulsion. Appl. Therm. Eng. 26, 2132–2141.
  86. Guin, M., Kundu, T., Singh, R., 2022. Applications of Nanotechnology in Biofuel Production, in: Bio-Clean Energy Technologies Volume 2. Springer, pp. 297–332
  87. Gumba, R.E., Saallah, S., Misson, M., Ongkudon, C.M., Anton, A., 2016. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Res. J. 3, 431–447.
  88. Gupta, A., Kumar, R., Maurya, A., Ahmadi, M.H., Ongar, B., Yegzekova, A., Sharma, J.P., Kanchan, S., Shelare, S., 2024. A comparative study of the impact on combustion and emission characteristics of nanoparticle‐based fuel additives in the internal combustion engine. Energy Sci. Eng. 12, 284–303.
  89. Hadiyanto, H., Aini, A. P., Widayat, W., Kusmiyati, K., Budiman, A., & Roesyadi, A. (2020). Multi-Feedstocks Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil and Waste Cooking Oil. International Journal of Renewable Energy Development, 9(1), 119-123.
  90. Hanaki, K., Portugal-Pereira, J., 2018. The effect of biofuel production on greenhouse gas emission reductions. Biofuels Sustain. Holist. Perspect. policy-making 53–71
  91. Hasibuan, S., Adiyatna, H., Widowati, I., Kandasamy, J., 2020. Feasibility Analysis of Compact-Mobile Biomass Pallet Technology as Renewable Fuel for Small and Medium Industries. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2484–2490.
  92. Hassan, A., Ilyas, S.Z., Agathopoulos, S., Hussain, S.M., Jalil, A., Ahmed, S., Baqir, Y., 2021. Evaluation of adverse effects of particulate matter on human life. Heliyon 7, e05968.
  93. Hassan, A.A., Smith, J.D., 2020. Investigation of microwave-assisted transesterification reactor of waste cooking oil. Renew. Energy 162, 1735–1746.
  94. Hatami, M., Hasanpour, M., Jing, D., 2020. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part I: Nano-fuels. J. Mol. Liq. 114250
  95. Hawi, M., Elwardany, A., Ismail, M., Ahmed, M., 2019. Experimental investigation on performance of a compression ignition engine fueled with waste cooking oil biodiesel–diesel blend enhanced with iron-doped cerium oxide nanoparticles. Energies 12, 798
  96. Hoang, A.T., 2021a. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. J. Mar. Eng. Technol. 20, 299–311.
  97. Hoang, A.T., 2021b. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. Fuel Process. Technol. 218, 106840.
  98. Hoang, A.T., 2019. Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel. Energy 171, 795–808.
  99. Hoang, A.T., Le, A.T., 2019. A review on deposit formation in the injector of diesel engines running on biodiesel. Energy Sources, Part A Recover. Util. Environ. Eff. 41, 584–599.
  100. Hoang, A.T., Noor, M.M., Pham, X.D., 2018. Comparative Analysis on Performance and Emission Characteristic of Diesel Engine Fueled with Heated Coconut Oil and Diesel Fuel. Int. J. Automot. Mech. Eng. 15, 5110–5125.
  101. Hoang, A.T., Pandey, A., Huang, Z., Luque, R., Ng, K.H., Papadopoulos, A.M., Chen, W.-H., Rajamohan, S., Hadiyanto, H., Nguyen, X.P., Pham, V.V., 2022a. Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route. ACS Sustain. Chem. Eng. 10, 3079–3115.
  102. Hoang, A.T., Pandey, A., Martinez De Osés, F.J., Chen, W.-H., Said, Z., Ng, K.H., Ağbulut, Ü., Tarełko, W., Ölçer, A.I., Nguyen, X.P., 2023a. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew. Sustain. Energy Rev. 188, 113790.
  103. Hoang, A.T., Pham, V.V., 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sustain. Energy Rev. 148, 111265.
  104. Hoang, A.T., Sirohi, R., Pandey, A., Nižetić, S., Lam, S.S., Chen, W.-H., Luque, R., Thomas, S., Arıcı, M., Pham, V.V., 2023b. Biofuel production from microalgae: challenges and chances. Phytochem. Rev. 22, 1089–1126.
  105. Hoang, A.T., Tabatabaei, M., Aghbashlo, M., Carlucci, A.P., Ölçer, A.I., Le, A.T., Ghassemi, A., 2021. Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review. Renew. Sustain. Energy Rev. 135, 110204.
  106. Hoang, A.T., Tran, V.D., Dong, V.H., Le, A.T., 2022b. An experimental analysis on physical properties and spray characteristics of an ultrasound-assisted emulsion of ultra-low-sulphur diesel and Jatropha-based biodiesel. J. Mar. Eng. Technol. 21, 73–81.
  107. Hoang, A.T., Xuan Le, M., Nižetić, S., Huang, Z., Ağbulut, Ü., Veza, I., Said, Z., Tuan Le, A., Dung Tran, V., Phuong Nguyen, X., 2022c. Understanding behaviors of compression ignition engine running on metal nanoparticle additives-included fuels: A control comparison between biodiesel and diesel fuel. Fuel 326, 124981.
  108. Hoseini, S.S., Najafi, G., Ghobadian, B., Ebadi, M.T., Mamat, R., Yusaf, T., 2020. Biodiesels from three feedstock: The effect of graphene oxide (GO) nanoparticles diesel engine parameters fuelled with biodiesel. Renew. Energy 145, 190–201.
  109. Hossain, A., Hussain, A., 2019. Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel. Energies 12, 921.
  110. Hosseini, S.A., 2022. Nanocatalysts for biodiesel production. Arab. J. Chem. 15, 104152.
  111. Hosseini, S.H., Taghizadeh-Alisaraei, A., Ghobadian, B., Abbaszadeh-Mayvan, A., 2017. Performance and emission characteristics of a CI engine fuelled with carbon nanotubes and diesel-biodiesel blends. Renew. Energy.
  112. Huang, G., Chen, F., Wei, D., Zhang, X., Chen, G., 2018. Biodiesel production by microalgal biotechnology, in: Renewable Energy. Routledge, p. Vol3_378-Vol3_395
  113. Huang, Wan, Liu, Zhang, Ma, Zhang, Zhou, 2019. A Downdraft Fixed-Bed Biomass Gasification System with Integrated Products of Electricity, Heat, and Biochar: The Key Features and Initial Commercial Performance. Energies 12, 2979.
  114. Hussain, F., Soudagar, M.E.M., Afzal, A., Mujtaba, M.A., Rizwanul Fattah, I.M., Naik, B., Mulla, M.H., Badruddin, I.A., Yunus Khan, T.M., Raju, V.D., Gavhane, R.S., Ashrafur Rahman, S.M., 2020. Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce-ZnO nanoparticle additive added to soybean biodiesel blends. Energies 13, 1–20.
  115. Hussain Vali, R., Hoang, A.T., Marouf Wani, M., Pali, H.S., Balasubramanian, D., Arıcı, M., Said, Z., Nguyen, X.P., 2022. Optimization of variable compression ratio diesel engine fueled with Zinc oxide nanoparticles and biodiesel emulsion using response surface methodology. Fuel 323, 124290.
  116. Huzayyin, A.S., Bawady, A.H., Rady, M.A., Dawood, A., 2004. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel. Energy Convers. Manag. 45, 2093–2112.
  117. Ilham, N.I., Hussin, M.Z., Dahlan, N.Y., Setiawan, E.A., 2022. Prospects and Challenges of Malaysia’s Distributed Energy Resources in Business Models Towards Zero – Carbon Emission and Energy Security. Int. J. Renew. Energy Dev. 11, 1089–1100.
  118. Ingle, A.P., Chandel, A.K., Philippini, R., Martiniano, S.E., da Silva, S.S., 2020. Advances in nanocatalysts mediated biodiesel production: a critical appraisal. Symmetry (Basel). 12, 256
  119. Jan, H.A., Saqib, N.U., Khusro, A., Sahibzada, M.U.K., Rauf, M., Alghamdi, S., Almehmadi, M., Khandaker, M.U., Emran, T. Bin, Mohafez, H., 2022. Synthesis of biodiesel from Carthamus tinctorius L. oil using TiO2 nanoparticles as a catalyst. J. King Saud Univ. - Sci. 34, 102317.
  120. Jeyakumar, N., Balasubramanian, D., Sankaranarayanan, M., Karuppasamy, K., Wae-Hayee, M., Le, V.V., Tran, V.D., Hoang, A.T., 2023. Using Pithecellobium Dulce seed-derived biodiesel combined with Groundnut shell nanoparticles for diesel engines as a well-advised approach toward sustainable waste-to-energy management. Fuel 337, 127164.
  121. Jeyakumar, N., Narayanasamy, B., Balasubramanian, D., Viswanathan, K., 2020. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. Fuel 281, 118614.
  122. Jiaqiang, E., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., Zhu, H., Liu, T., Peng, Q., Zhang, Z., 2017. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renew. Sustain. Energy Rev. 80, 620–647
  123. Jin, C., Wei, J., 2023. The combined effect of water and nanoparticles on diesel engine powered by biodiesel and its blends with diesel: A review. Fuel 343, 127940.
  124. Jit Sarma, C., Sharma, P., Bora, B.J., Bora, D.K., Senthilkumar, N., Balakrishnan, D., Ayesh, A.I., 2023. Improving the combustion and emission performance of a diesel engine powered with mahua biodiesel and TiO2 nanoparticles additive. Alexandria Eng. J. 72, 387–398.
  125. Joshi, N.C., Gururani, P., Bhatnagar, P., Kumar, V., Vlaskin, M.S., 2023. Advances in Metal Oxide‐based Nanocatalysts for Biodiesel Production: A Review. ChemBioEng Rev. 10, 258–271.
  126. Jumaa, H., Mashkour, M.A., 2021. Humidification Effect on the Performance and Emissions of (DI) Diesel Engine Running on Diesel Fuel with Biodiesel Blended Nano Additives. Eng. Technol. J. 39, 790–803
  127. Jume, B.H., Gabris, M.A., Rashidi Nodeh, H., Rezania, S., Cho, J., 2020. Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles. Renew. Energy 162, 2182–2189.
  128. Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., 2020. Emission analysis of CI engine with CeO2 nanoparticles added neochloris oleoabundans biodiesel-diesel fuel blends. Mater. Today Proc. 33, 2877–2881.
  129. Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., Dharmaprabhakaran, T., 2023. Experimental studies on the influence of copper oxide nanoparticle on biodiesel-diesel fuel blend in CI engine. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 8997–9012.
  130. Kalaimurugan, K., Karthikeyan, S., Periyasamy, M., Mahendran, G., Dharmaprabhakaran, T., 2019. Performance, emission and combustion characteristics of RuO2 nanoparticles addition with neochloris oleoabundans algae biodiesel on CI engine. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–15.
  131. Kalita, P., Basumatary, B., Saikia, P., Das, B., Basumatary, S., 2022. Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus 6, 100087.
  132. Kalyani, T., Prasad, L.S.V., Kolakoti, A., 2023. Biodiesel Production from a Naturally Grown Green Algae Spirogyra Using Heterogeneous Catalyst: An Approach to RSM Optimization Technique. Int. J. Renew. Energy Dev. 12, 300–312.
  133. Kannaiyan, K., Sadr, R., 2017. The effects of alumina nanoparticles as fuel additives on the spray characteristics of gas-to-liquid jet fuels. Exp. Therm. Fluid Sci. 87, 93–103
  134. Kannaiyan, K., Sadr, R., Kumaravel, V., 2019. Application of nanoparticles in clean fuels. Nanostructured Mater. Energy Relat. Appl. 223–242
  135. Karthickeyan, V., Ashok, B., Thiyagarajan, S., Nanthagopal, K., Geo, V.E., Dhinesh, B., 2020. Comparative analysis on the influence of antioxidants role with Pistacia khinjuk oil biodiesel to reduce emission in diesel engine. Heat Mass Transf. 56, 1275–1292.
  136. Karthikeyan, S., Elango, A., Prathima, A., 2016. The effect of cerium oxide additive on the performance and emission characteristics of a CI engine operated with rice bran biodiesel and its blends. Int. J. Green Energy.
  137. Kegl, T., Kovač Kralj, A., Kegl, B., Kegl, M., 2021. Nanomaterials as fuel additives in diesel engines: A review of current state, opportunities, and challenges. Prog. Energy Combust. Sci. 83, 100897.
  138. Keskin, A., Yaşar, A., Yıldızhan, Ş., Uludamar, E., Emen, F.M., Külcü, N., 2018. Evaluation of diesel fuel-biodiesel blends with palladium and acetylferrocene based additives in a diesel engine. Fuel.
  139. Khan, A.I., Arasu, A.V., 2019. A review of influence of nanoparticle synthesis and geometrical parameters on thermophysical properties and stability of nanofluids. Therm. Sci. Eng. Prog. 11, 334–364
  140. Khan, N., Sudhakar, K., Mamat, R., 2021. Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality. Sustainability 13, 12374.
  141. Khan, S., Dewang, Y., Raghuwanshi, J., Shrivastava, A., Sharma, V., 2020. Nanoparticles as fuel additive for improving performance and reducing exhaust emissions of internal combustion engines. Int. J. Environ. Anal. Chem. 1–23.
  142. Khoobbakht, G., Kheiralipour, K., Rasouli, H., Rafiee, M., Hadipour, M., Karimi, M., 2020. Experimental exergy analysis of transesterification in biodiesel production. Energy 196, 117092.
  143. Kishore, N.P., Gugulothu, S.K., 2022. Effect of iron oxide nanoparticles blended concentration on performance, combustion and emission characteristics of crdi diesel engine running on mahua methyl ester biodiesel. J. Inst. Eng. Ser. C 103, 167–180
  144. Kohli, S., Pavani Srikavya, B., Kishor Dhapekar, N., Tiwari, R., Kumar, R., Singh Yadav, A., Sharma, N., Sharma, A., 2023. Impact of nano materials on engine performance run on biofuels. Mater. Today Proc.
  145. Kolakoti, A., Setiyo, M., Rochman, M.L., 2022. A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach. Int. J. Renew. Energy Dev. 11, 703–712
  146. Konwar, L.J., Boro, J., Deka, D., 2014. Review on latest developments in biodiesel production using carbon-based catalysts. Renew. Sustain. Energy Rev. 29, 546–564.
  147. Kowalski, J., Tarelko, W., 2009a. NOx emission from a two-stroke ship engine. Part 1: Modeling aspect. Appl. Therm. Eng. 29, 2153–2159.
  148. Kowalski, J., Tarelko, W., 2009b. NOx emission from a two-stroke ship engine: Part 2 – Laboratory test. Appl. Therm. Eng. 29, 2160–2165.
  149. Küçükosman, R., Yontar, A.A., Ocakoglu, K., 2022. Nanoparticle additive fuels: Atomization, combustion and fuel characteristics. J. Anal. Appl. Pyrolysis 165, 105575
  150. Kumar, A.M., Kannan, M., Nataraj, G., 2020. A study on performance, emission and combustion characteristics of diesel engine powered by nano-emulsion of waste orange peel oil biodiesel. Renew. Energy 146, 1781–1795.
  151. Kumar, L.R., Yellapu, S.K., Tyagi, R.D., Drogui, P., 2021. Biodiesel production from microbial lipid obtained by intermittent feeding of municipal sludge and treated crude glycerol. Syst. Microbiol. Biomanufacturing 1, 344–355.
  152. Kumar, M.V., Babu, A.V., Kumar, P.R., 2019. Influence of metal-based cerium oxide nanoparticle additive on performance, combustion, and emissions with biodiesel in diesel engine. Environ. Sci. Pollut. Res.
  153. Kumar, N., Aggarwal, N.K., 2024. A review on valorization, management, and applications of the hazardous weed Parthenium hysterophorus. Syst. Microbiol. Biomanufacturing.
  154. Kumar, S., Dinesha, P., Ajay, C.M., Kabbur, P., 2020. Combined effect of oxygenated liquid and metal oxide nanoparticle fuel additives on the combustion characteristics of a biodiesel engine operated with higher blend percentages. Energy 197, 117194.
  155. Kumar, S., Dinesha, P., Bran, I., 2017a. Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: An experimental analysis. Energy 140, 98–105.
  156. Kumar, S., Dinesha, P., Bran, I., 2017b. Experimental investigation of the effects of nanoparticles as an additive in diesel and biodiesel fuelled engines: a review. Biofuels
  157. Kumar, S., Dinesha, P., Rosen, M.A., 2019. Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive. Energy 185, 1163–1173
  158. Kumar, S.S., Rajan, K., Mohanavel, V., Ravichandran, M., Rajendran, P., Rashedi, A., Sharma, A., Khan, S.A., Afzal, A., 2021. Combustion, performance, and emission behaviors of biodiesel fueled diesel engine with the impact of alumina nanoparticle as an additive. Sustainability 13, 12103
  159. Kumaravel, S.T., Murugesan, A., Kumaravel, A., 2016. Tyre pyrolysis oil as an alternative fuel for diesel engines – A review. Renew. Sustain. Energy Rev. 60, 1678–1685.
  160. Labeckas, G., Slavinskas, S., Rudnicki, J., Zadrąg, R., 2018. The Effect of Oxygenated Diesel-N-Butanol Fuel Blends on Combustion, Performance, and Exhaust Emissions of a Turbocharged CRDI Diesel Engine. Polish Marit. Res. 25, 108–120.
  161. Lamas, M.I., C.G., R., J., T., J.D., R., 2015. Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels. Polish Marit. Res. 22, 48–52.
  162. Le, T.T., Kumar, R., Roy, M.K., Mishra, M.K., Mahto, P.K., Balasubramanian, D., Truong, T.H., Vu, M.T., 2024. An Experimental Assessment of Waste Transformer Oil and Palm Oil Biodiesel Blended with Diesel Fuel on A Single Cylinder Direct in Diesel Engine. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 246–258.
  163. Le, T.T., Venugopal, I.P., Truong, T.H., Cao, D.N., Le, H.C., Nguyen, X.P., 2023. Effects of CeO2 nanoparticles on engine features, tribology behaviors, and environment. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 8791–8822
  164. Le, V.V., Hoang, A.T., Nizetić, S., Ölçer, A.I., 2021. Flame characteristics and ignition delay times of 2, 5-Dimethylfuran: A systematic review with comparative analysis. J. Energy Resour. Technol. 43, 1–16.
  165. Lilik, G.K., Boehman, A.L., 2011. Advanced Diesel Combustion of a High Cetane Number Fuel with Low Hydrocarbon and Carbon Monoxide Emissions. Energy & Fuels 25, 1444–1456.
  166. Long, F., Liu, W., Jiang, X., Zhai, Q., Cao, X., Jiang, J., Xu, J., 2021. State-of-the-art technologies for biofuel production from triglycerides: A review. Renew. Sustain. Energy Rev. 148, 111269.
  167. Lotti, M., Pleiss, J., Valero, F., Ferrer, P., 2018. Enzymatic production of biodiesel: strategies to overcome methanol inactivation. Biotechnol. J. 13, 1700155
  168. Lu, J., Li, B., Li, H., Al-Barakani, A., 2021. Expansion of city scale, traffic modes, traffic congestion, and air pollution. Cities 108, 102974.
  169. Madiwale, S., Karthikeyan, A., Bhojwani, V., 2018. Properties investigation and performance analysis of a diesel engine fuelled with Jatropha, Soybean, Palm and Cottonseed biodiesel using Ethanol as an additive. Mater. Today Proc. 5, 657–664.
  170. Maheshwari, P., Haider, M.B., Yusuf, M., Klemeš, J.J., Bokhari, A., Beg, M., Al-Othman, A., Kumar, R., Jaiswal, A.K., 2022. A review on latest trends in cleaner biodiesel production: Role of feedstock, production methods, and catalysts. J. Clean. Prod. 355, 131588.
  171. Mandotra, S.K., Kumar, R., Upadhyay, S.K., Ramteke, P.W., 2018. Nanotechnology: a new tool for biofuel production. Green Nanotechnol. biofuel Prod. 17–28
  172. Manigandan, S., Ponnusamy, V.K., Devi, P.B., Oke, S.A., Sohret, Y., Venkatesh, S., Vimal, M.R., Gunasekar, P., 2020. Effect of nanoparticles and hydrogen on combustion performance and exhaust emission of corn blended biodiesel in compression ignition engine with advanced timing. Int. J. Hydrogen Energy 45, 3327–3339.
  173. Manimaran, R., Mohanraj, T., Ashwin, R., 2023. Green synthesized nano-additive dosed biodiesel-diesel-water emulsion blends for CI engine application: Performance, combustion, emission, and exergy analysis. J. Clean. Prod. 413, 137497.
  174. Manimaran, R., Mohanraj, T., Venkatesan, M., Ganesan, R., Balasubramanian, D., 2022. A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approach. Energy 124293
  175. Marković, M., Jurić, F., Šošić, D.P., Schmalhorst, C., Hoang, A.T., Vujanović, M., 2024. Numerical Assessment of Polyoxymethylene Dimethyl Ether (OME3) Injection Timing in Compression Ignition Engine. Clean Technol. Environ. Policy. 26, 149–167.
  176. Mathew, G.M., Raina, D., Narisetty, V., Kumar, V., Saran, S., Pugazhendi, A., Sindhu, R., Pandey, A., Binod, P., 2021. Recent advances in biodiesel production: challenges and solutions. Sci. Total Environ. 794, 148751
  177. MEHER, L., VIDYASAGAR, D., NAIK, S., 2006. Technical aspects of biodiesel production by transesterification—a review. Renew. Sustain. Energy Rev. 10, 248–268.
  178. Minchev, D., Varbanets, R., Shumylo, O., Zalozh, V., Aleksandrovska, N., Bratchenko, P., Truong, T.H., 2023. Digital Twin Test-Bench Performance for Marine Diesel Engine Applications. Polish Marit. Res. 30, 81–91.
  179. Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Shen How, B., Fui Chin, B.L., 2020. Optimization Study of Syngas Production from Catalytic Air Gasification of Rice Husk. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1784–1791.
  180. Moazeni, F., Chen, Y.-C., Zhang, G., 2019. Enzymatic transesterification for biodiesel production from used cooking oil, a review. J. Clean. Prod. 216, 117–128.
  181. Mobasheri, R., Aitouche, A., Pourtaghi Yousefdeh, S., Zarenezhad Ashkezari, A., 2023. Assessing the Impact of Ethanol/Biodiesel/Diesel Blends and Nanoparticle Fuel Additives on Performance and Emissions in a DI Diesel Engine with EGR Integration: An Experimental Study. Processes 11, 1266
  182. Mofijur, M., Ahmed, S.F., Ahmed, B., Mehnaz, T., Mehejabin, F., Shome, S., Almomani, F., Chowdhury, A.A., Kalam, M.A., Badruddin, I.A., Kamangar, S., 2024. Impact of nanoparticle-based fuel additives on biodiesel combustion: An analysis of fuel properties, engine performance, emissions, and combustion characteristics. Energy Convers. Manag. X 21, 100515.
  183. Mohamad Aziz, N.A., Yunus, R., Kania, D., Abd Hamid, H., 2021. Prospects and Challenges of Microwave-Combined Technology for Biodiesel and Biolubricant Production through a Transesterification: A Review. Molecules 26, 788.
  184. Mostafa, A., Mourad, M., Mustafa, A., Youssef, I., 2023. Influence of aluminum oxide nanoparticles addition with diesel fuel on emissions and performance of engine generator set using response surface methodology. Energy Convers. Manag. X 19, 100389
  185. Mujtaba, M.A., Masjuki, H.H., Kalam, M.A., Noor, F., Farooq, M., Ong, H.C., Gul, M., Soudagar, M.E.M., Bashir, S., Rizwanul Fattah, I.M., 2020. Effect of additivized biodiesel blends on diesel engine performance, emission, tribological characteristics, and lubricant tribology. Energies 13, 3375
  186. Murugan, N., Venu, H., Jayaraman, J., Appavu, P., 2022. Emission and performance characteristics study on nanographene oxide additives doped palm oil methyl ester blend in a diesel engine. Int. J. Ambient Energy 43, 1304–1310
  187. Murugesan, P., Elumalai, P.V., Balasubramanian, D., Padmanabhan, S., Murugunachippan, N., Afzal, A., Sharma, P., Kiran, K., Femilda Josephin, J., Varuvel, E.G., Tuan Le, T., Truong, T.H., 2023. Exploration of low heat rejection engine characteristics powered with carbon nanotubes-added waste plastic pyrolysis oil. Process Saf. Environ. Prot. 176, 1101–1119.
  188. Murugesan, P., Hoang, A.T., Perumal Venkatesan, E., Santosh Kumar, D., Balasubramanian, D., Le, A.T., Pham, V.V., 2022. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. Int. J. Hydrogen Energy 47, 37617–37634.
  189. Mustafa, A., Lougou, B.G., Shuai, Y., Wang, Z., Tan, H., 2020. Current technology development for CO2 utilization into solar fuels and chemicals: A review. J. Energy Chem. 49, 96–123
  190. Nachippan, N.M., Parthasarathy, M., Elumalai, P.V., Backiyaraj, A., Balasubramanian, D., Hoang, A.T., 2022. Experimental assessment on characteristics of premixed charge compression ignition engine fueled with multi-walled carbon nanotube-included Tamanu methyl ester. Fuel 323, 124415.
  191. Naik, J.V., Kumar, K.K., 2018. Performance and emission characteristics of diesel engines with Al2O3 and CuO nanoparticles as additives. Int. J. Mech. Eng. Technol. 9, 791–798
  192. Nanda, S., Rana, R., Sarangi, P.K., Dalai, A.K., Kozinski, J.A., 2018. A broad introduction to first-, second-, and third-generation biofuels, in: Recent Advancements in Biofuels and Bioenergy Utilization. Springer, pp. 1–25
  193. Nanthagopal, K., Ashok, B., Tamilarasu, A., Johny, A., Mohan, A., 2017. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers. Manag. 146, 8–19.
  194. Nayak, S.K., Nižetić, S., Pham, V.V., Huang, Z., Ölçer, A.I., Bui, V.G., Wattanavichien, K., Hoang, A.T., 2022. Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. J. Clean. Prod. 333, 130160.
  195. Nayak, S.N., Bhasin, C.P., Nayak, M.G., 2019. A review on microwave-assisted transesterification processes using various catalytic and non-catalytic systems. Renew. Energy 143, 1366–1387.
  196. Nguyen, T.B.N., Le, N.V.L., 2023. Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. J. Emerg. Sci. Eng. 1, 6–13.
  197. Nguyen, V.G., Pham, M.T., Le, N.V.L., Le, H.C., Truong, T.H., Cao, D.N., 2023. A comprehensive review on the use of biodiesel for diesel engines. Int. J. Renew. Energy Dev. 12, 720–740.
  198. Nguyen, V.G., Tran, M.H., Paramasivam, P., Le, H.C., Nguyen, D.T., 2024. Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 268–286.
  199. Nguyen, V.N., Nayak, B., Singh, T.J., Nayak, S.K., Cao, D.N., Le, H.C., Nguyen, X.P., 2023a. Investigations on the performance, emission and combustion characteristics of a dual-fuel diesel engine fueled with induced bamboo leaf gaseous fuel and injected mixed biodiesel-diesel blends. Int. J. Hydrogen Energy.
  200. Nguyen, V.N., Rudzki, K., Marek, D., Pham, N.D.K., Pham, M.T., Nguyen, P.Q.P., Nguyen, X.P., 2023b. Understanding fuel saving and clean fuel strategies towards green maritime. Polish Marit. Res. 30, 146–164.
  201. Nguyen, X.P., Hoang, A.T., Ölçer, A.I., Huynh, T.T., 2021. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sources, Part A Recover. Util. Environ. Eff. 1–4.
  202. Nguyen, X.P., Vu, H.N., 2019. Corrosion of the metal parts of diesel engines in biodiesel-based fuels. Int. J. Renew. Energy Dev. 8, 119–132.
  203. Nizami, A.-S., Rehan, M., 2018. Towards nanotechnology-based biofuel industry. Biofuel Res. J. 5, 798–799
  204. Oladeji, A.S., Akorede, M.F., Aliyu, S., Mohammed, A.A., Salami, A.W., 2021. Simulation-Based Optimization of Hybrid Renewable Energy System for Off-grid Rural Electrification. Int. J. Renew. Energy Dev. 10. 667-686.
  205. Olszewski, W., Dzida, M., Nguyen, V.G., Cao, D.N., 2023. Reduction of CO 2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels. Polish Marit. Res. 30, 71–80.
  206. Ooi, J.B., Rajanren, J.R., Ismail, H.M., Swamy, V., Wang, X., 2017. Improving combustion characteristics of diesel and biodiesel droplets by graphite oxide addition for diesel engine applications. Int. J. Energy Res. 41, 2258–2267.
  207. Örs, I., Sarıkoç, S., Atabani, A.E., Ünalan, S., Akansu, S.O., 2018. The effects on performance, combustion and emission characteristics of DICI engine fuelled with TiO2 nanoparticles addition in diesel/biodiesel/n-butanol blends. Fuel 234, 177–188.
  208. P, M., P, P., Sathyamurthy, R., 2021. Analysis on performance and emission characteristics of corn oil methyl ester blended with diesel and cerium oxide nanoparticle. Case Stud. Therm. Eng. 26, 101077.
  209. Pandian, A.K., Ramakrishnan, R.B.B., Devarajan, Y., 2017. Emission analysis on the effect of nanoparticles on neat biodiesel in unmodified diesel engine. Environ. Sci. Pollut. Res. 24, 23273–23278.
  210. Pandit, C., Banerjee, S., Pandit, S., Lahiri, D., Kumar, V., Chaubey, K.K., Al-Balushi, R., Al-Bahry, S., Joshi, S.J., 2023. Recent advances and challenges in the utilization of nanomaterials in transesterification for biodiesel production. Heliyon
  211. Parida, M.K., Mohapatra, P., Patro, S.S., Dash, S., 2020. Effect of TiO 2 nano-additive on performance and emission characteristics of direct injection compression ignition engine fueled with Karanja biodiesel blend. Energy Sources, Part A Recover. Util. Environ. Eff. 1–10.
  212. Perumal, V., Ilangkumaran, M., 2018. The influence of copper oxide nano particle added pongamia methyl ester biodiesel on the performance, combustion and emission of a diesel engine. Fuel 232, 791–802.
  213. Prabakaran, B., Udhoji, A., 2016. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alexandria Eng. J.
  214. Prabakaran, V., Mugunthan, V., Mohamed Yaseen Sharif K, S., Naveen Kumar, R., Nithish, K., 2017. Comparison of Performance, Combustion and Emission Parameter for Copper Oxide Nano Particles Blended with used Vegetable oil Biodiesel in an IC Engine. Int. J. Innov. Res. Sci. Eng. Technol. 6, 1–10
  215. Prabu, A., Premkumar, I.J.I., Pradeep, A., 2019. An assessment on the nanoparticles-dispersed aloe vera biodiesel blends on the performance, combustion and emission characteristics of a DI diesel engine. Arab. J. Sci. Eng. 44, 7457–7463
  216. Praveen, A., Lakshmi Narayana Rao, G., Balakrishna, B., 2018. Performance and emission characteristics of a diesel engine using Calophyllum Inophyllum biodiesel blends with TiO2 nanoadditives and EGR. Egypt. J. Pet. 27, 731–738.
  217. Priya, Deora, P.S., Verma, Y., Muhal, R.A., Goswami, C., Singh, T., 2022. Biofuels: An alternative to conventional fuel and energy source. Mater. Today Proc. 48, 1178–1184.
  218. Pullagura, G., Bikkavolu, J.R., Vadapalli, S., Siva, P.V.V., Chebattina, K.R.R., Barik, D., Nayyar, A., Sharma, P., Bora, B.J., 2024. Amplifying performance attributes of biodiesel–diesel blends through hydrogen infusion and graphene oxide nanoparticles in a diesel engine. Clean Technol. Environ. Policy 1–23
  219. Qamar, O.A., Jamil, F., Hussain, M., Bae, S., Inayat, A., Shah, N.S., Waris, A., Akhter, P., Kwon, E.E., Park, Y.-K., 2023. Advances in synthesis of TiO2 nanoparticles and their application to biodiesel production: A review. Chem. Eng. J. 460, 141734.
  220. Radhakrishnan Lawrence, K., Huang, Z., Nguyen, X.P., Balasubramanian, D., Gangula, V.R., Doddipalli, R.R., Le, V.V., Bharathy, S., Hoang, A.T., 2022. Exploration over combined impacts of modified piston bowl geometry and tert-butyl hydroquinone additive-included biodiesel/diesel blend on diesel engine behaviors. Fuel 322, 124206.
  221. Radhakrishnan, S., Munuswamy, D.B., Devarajan, Y., Arunkumar, T., Mahalingam, A., 2018. Effect of nanoparticle on emission and performance characteristics of a diesel engine fueled with cashew nut shell biodiesel. Energy Sources, Part A Recover. Util. Environ. Eff.
  222. Raheman, H., Padhee, D., 2014. Combustion characteristics of diesel engine using producer gas and blends of Jatropha methyl ester with diesel in mixed fuel mode. Int. J. Renew. Energy Dev. 3, 228–235.
  223. Rahman, S.A., Meryandini, A., Juanssilfero, A.B., Fahrurrozi, 2023. Cocoa Pod Husk (CPH) for Biomass on Bioethanol Production. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 828–836.
  224. Rai, M., dos Santos, J.C., Soler, M.F., Franco Marcelino, P.R., Brumano, L.P., Ingle, A.P., Gaikwad, S., Gade, A., da Silva, S.S., 2016. Strategic role of nanotechnology for production of bioethanol and biodiesel. Nanotechnol. Rev. 5, 231–250
  225. Ramakrishnan, G., Krishnan, P., Rathinam, S., Thiyagu, R., Devarajan, Y., 2019. Role of nano-additive blended biodiesel on emission characteristics of the research diesel engine. 16, 435–441
  226. Ranjan, A., Dawn, S.S., Jayaprabakar, J., Nirmala, N., Saikiran, K., Sai Sriram, S., 2018. Experimental investigation on effect of MgO nanoparticles on cold flow properties, performance, emission and combustion characteristics of waste cooking oil biodiesel. Fuel.
  227. Rastogi, P.M., Sharma, A., Kumar, N., 2021. Effect of CuO nanoparticles concentration on the performance and emission characteristics of the diesel engine running on jojoba (Simmondsia Chinensis) biodiesel. Fuel 286, 119358.
  228. Rather, M.A., Bano, P., 2019. Third generation biofuels: a promising alternate energy source. Integr. Green Chem. Sustain. Eng. 1–21
  229. Reddy, S.N., Nanda, S., Sarangi, P.K., 2018. Applications of Supercritical Fluids for Biodiesel Production, in: Recent Advancements in Biofuels and Bioenergy Utilization. Springer Singapore, Singapore, pp. 261–284.
  230. Sadhik Basha, J., 2018. Impact of Carbon Nanotubes and Di-Ethyl Ether as additives with biodiesel emulsion fuels in a diesel engine – An experimental investigation. J. Energy Inst.
  231. Sajeevan, A.C., Sajith, V., 2013. A study on oxygen storage capacity of zirconium-cerium-oxide nanoparticles. Adv. Mater. Res. 685, 123–127
  232. Salaheldeen, M., Mariod, A.A., Aroua, M.K., Rahman, S.M.A., Soudagar, M.E.M., Fattah, I.M.R., 2021. Current State and Perspectives on Transesterification of Triglycerides for Biodiesel Production. Catalysts 11, 1121.
  233. Sales, M.B., Borges, P.T., Ribeiro Filho, M.N., Miranda da Silva, L.R., Castro, A.P., Sanders Lopes, A.A., Chaves de Lima, R.K., de Sousa Rios, M.A., Santos, J.C.S. dos, 2022. Sustainable Feedstocks and Challenges in Biodiesel Production: An Advanced Bibliometric Analysis. Bioengineering 9, 539.
  234. Sam Sukumar, R., Maddula, M.R., Gopala Krishna, A., 2020. Experimental investigations with zinc oxide and silver doped zinc oxide nanoparticles for performance and emissions study of biodiesel blends in diesel engine. Int. J. Ambient Energy 1–9.
  235. Sarıdemir, S., Polat, F., Ağbulut, Ü., 2024. Improvement of worsened diesel and waste biodiesel fuelled-engine characteristics with Hydrogen enrichment: A deep discussion on combustion, performance, and emission analyses. Process Saf. Environ. Prot.
  236. Sathish, T., Ağbulut, Ü., George, S.M., Ramesh, K., Saravanan, R., Roberts, K.L., Sharma, P., Asif, M., Hoang, A.T., 2023a. Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy 275, 127397.
  237. Sathish, T., Ağbulut, Ü., Muthukumar, K., Saravanan, R., Alwetaishi, M., Shaik, S., Saleel, C.A., 2023b. Pore size variation of nano-porous material fixer on the engine bowl and its combined effects on hybrid nano-fuelled CI engine characteristics. Fuel 345, 128149.
  238. Saxena, V., Kumar, N., Saxena, V.K., 2017. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine. Renew. Sustain. Energy Rev. 70, 563–588
  239. Selvaganapthy, A., Sundar, A., Kumaragurubaran, B., Gopal, P., 2013. An experimental investigation to study the effects of various nano particles with diesel on DI diesel engine. ARPN J. Sci. Technol. 3, 112–115
  240. Semin, Bakar, R.A., RFC, L.P.A., 2020. Analysis of the Effect of Intake Valve Fin Adding of Dual Fuel Engine on the Performance-Based Experiment. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1939–1945.
  241. Semwal, S., Raj, T., Patel, A.K., Arora, A.K., Badoni, R.P., Singhania, R.R., 2023. Synthesis of Ca–Fe-based heterogeneous catalyst from waste shells and their application for transesterification of Jatropha oil. Syst. Microbiol. Biomanufacturing 3, 681–692.
  242. Senthilraja, S., Karthikeyan, M., Gangadevi, R., 2010. Nanofluid applications in future automobiles: comprehensive review of existing data. Nano-Micro Lett. 2, 306–310
  243. Serbin, S., Burunsuz, K., Chen, D., Kowalski, J., 2022. Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Marit. Res. 29, 64–76.
  244. Shaafi, T., Sairam, K., Gopinath, A., Kumaresan, G., Velraj, R., 2015. Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—a review. Renew. Sustain. Energy Rev. 49, 563–573
  245. Shaafi, T., Velraj, R., 2015. Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions. Renew. Energy 80, 655–663.
  246. Sharma, P., Chhillar, A., Said, Z., Huang, Z., Nguyen, V.N., Nguyen, P.Q.P., Nguyen, X.P., 2022. Experimental investigations on efficiency and instability of combustion process in a diesel engine fueled with ternary blends of hydrogen peroxide additive/biodiesel/diesel. Energy Sources, Part A Recover. Util. Environ. Eff. 44, 5929–5950.
  247. Sharma, P., Sharma, A.K., 2022. Statistical and Continuous Wavelet Transformation-Based Analysis of Combustion Instabilities in a Biodiesel-Fueled Compression Ignition Engine. J. Energy Resour. Technol. 144.
  248. Sharma, P., Sharma, A.K., 2021a. AI-Based Prognostic Modeling and Performance Optimization of CI Engine Using Biodiesel-Diesel Blends. Int. J. Renew. Energy Resour. 11, 701–708
  249. Sharma, P., Sharma, A.K., 2021b. Application of Response Surface Methodology for Optimization of Fuel Injection Parameters of a Dual Fuel Engine Fuelled with Producer Gas- Biodiesel blends. Energy Sources, Part A Recover. Util. Environ. Eff. 00, 1–18.
  250. Sharma, P., Sharma, A.K., 2020. Experimental Evaluation of Thermal and Combustion Performance of a DI Diesel Engine Using Waste Cooking Oil Methyl Ester and Diesel Fuel Blends, in: Smart Innovation, Systems and Technologies.
  251. Shelare, S.D., Belkhode, P.N., Nikam, K.C., Jathar, L.D., Shahapurkar, K., Soudagar, M.E.M., Veza, I., Khan, T.M.Y., Kalam, M.A., Nizami, A.-S., Rehan, M., 2023. Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production. Energy 282, 128874.
  252. Shrivastava, N., Shrivastava, D., Shrivastava, V., 2018. Experimental investigation of performance and emission characteristics of diesel engine using Jatropha biodiesel with alumina nanoparticles. Int. J. Green Energy 15, 136–143.
  253. Silviana, S., Anggoro, D.D., Hadiyanto, H., Salsabila, C.A., Aprilio, K., Utami, A.W., Sa’adah, A.N., Dalanta, F., 2022. A Review on the Recent Breakthrough Methods and Influential Parameters in the Biodiesel Synthesis and Purification. Int. J. Renew. Energy Dev. 11, 1012–1036
  254. Singh, B.R., Singh, O., 2012. Global trends of fossil fuel reserves and climate change in the 21st century. chapter
  255. Singh Pali, H., Sharma, A., Kumar, M., Anand Annakodi, V., Nhanh Nguyen, V., Kumar Singh, N., Singh, Y., Balasubramanian, D., Deepanraj, B., Hai Truong, T., Quy Phong Nguyen, P., 2023. Enhancement of combustion characteristics of waste cooking oil biodiesel using TiO2 nanofluid blends through RSM. Fuel 331, 125681.
  256. Siregar, K., 2015. Strategy to Reduce GHG Emission and Energy Consumption at Process Production of Biodiesel Using Catalyst From Crude Palm Oil (CPO) and Crude Jatropha Curcas Oil (CJCO) in Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 5, 293–299
  257. Sitompul, R.F., Sinaga, D.A.P., 2020. Sustainability Approach of Site Selection for Renewables Deployment in Indonesian Rural Electrical Grids. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2518–2525.
  258. Sivakumar, M., Shanmuga Sundaram, N., Ramesh kumar, R., Syed Thasthagir, M.H., 2018. Effect of aluminium oxide nanoparticles blended pongamia methyl ester on performance, combustion and emission characteristics of diesel engine. Renew. Energy.
  259. Soudagar, M.E.M., Banapurmath, N.R., Afzal, A., Hossain, N., Abbas, M.M., Haniffa, M.A.C.M., Naik, B., Ahmed, W., Nizamuddin, S., Mubarak, N.M., 2020. Study of diesel engine characteristics by adding nanosized zinc oxide and diethyl ether additives in Mahua biodiesel–diesel fuel blend. Sci. Rep. 10, 1–17
  260. Soudagar, M.E.M., Mujtaba, M.A., Safaei, M.R., Afzal, A., V, D.R., Ahmed, W., Banapurmath, N.R., Hossain, N., Bashir, S., Badruddin, I.A., Goodarzi, M., Shahapurkar, K., Taqui, S.N., 2021. Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics. Energy 215, 119094.
  261. Soudagar, M.E.M., Nik-Ghazali, N.N., Abul Kalam, M., Badruddin, I.A., Banapurmath, N.R., Akram, N., 2018. The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance and emission characteristics. Energy Convers. Manag.
  262. Soukht Saraee, H., Jafarmadar, S., Alizadeh-Haghighi, E., Ashrafi, S.J., 2016. Experimental investigation of pollution and fuel consumption on a CI engine operated on alumina nanoparticles-Diesel fuel with the aid of artificial neural network. Environ. Prog. Sustain. Energy 35, 540–546.
  263. Soulayman, S., Ola, D., 2019. Synthesis parameters of biodiesel from frying oils wastes. Int. J. Renew. Energy Dev. 8, 33–39.
  264. Srinidhi, C., Madhusudhan, A., Channapattana, S. V., 2019. Effect of NiO nanoparticles on performance and emission characteristics at various injection timings using biodiesel-diesel blends. Fuel 235, 185–193.
  265. Srinivasan, S.K., Kuppusamy, R., Krishnan, P., 2021. Effect of nanoparticle-blended biodiesel mixtures on diesel engine performance, emission, and combustion characteristics. Environ. Sci. Pollut. Res. 28, 39210–39226
  266. Stelmasiak, Z., Larisch, J., Pielecha, J., Pietras, D., 2017. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas. Polish Marit. Res. 24, 96–104.
  267. Suhel, A., Abdul Rahim, N., Abdul Rahman, M.R., Bin Ahmad, K.A., 2021. Engine’s behaviour on magnetite nanoparticles as additive and hydrogen addition of chicken fat methyl ester fuelled DICI engine: A dual fuel approach. Int. J. Hydrogen Energy 46, 14824–14843.
  268. Tamilvanan, A., Balamurugan, K., Vijayakumar, M., 2019. Effects of nano-copper additive on performance, combustion and emission characteristics of Calophyllum inophyllum biodiesel in CI engine. J. Therm. Anal. Calorim. 136, 317–330.
  269. Thangaraj, B., Solomon, P.R., Muniyandi, B., Ranganathan, S., Lin, L., 2019. Catalysis in biodiesel production—a review. Clean Energy 3, 2–23
  270. Tran‐Nguyen, P.L., Ong, L.K., Go, A.W., Ju, Y., Angkawijaya, A.E., 2020. Non‐catalytic and heterogeneous acid/base‐catalyzed biodiesel production: Recent and future developments. Asia-Pacific J. Chem. Eng. 15.
  271. Tran, V.D., Sharma, P., Nguyen, L.H., 2023. Digital twins for internal combustion engines: A brief review. J. Emerg. Sci. Eng. 1, 29–35.
  272. Trirahayu, D.A., Abidin, A.Z., Putra, R.P., Hidayat, A.S., Safitri, E., Perdana, M.I., 2022. Process Simulation and Design Considerations for Biodiesel Production from Rubber Seed Oil. Fuels 3, 563–579.
  273. Truong, T.T., Nguyen, X.P., Pham, V.V., Le, V.V., Le, A.T., Bui, V.T., 2021. Effect of alcohol additives on diesel engine performance: a review. Energy Sources, Part A Recover. Util. Environ. Eff. 1–25.
  274. Tuan Hoang, A., Nižetić, S., Chyuan Ong, H., Tarelko, W., Viet Pham, V., Hieu Le, T., Quang Chau, M., Phuong Nguyen, X., 2021. A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels. Sustain. Energy Technol. Assessments 47, 101416.
  275. Ungwiwatkul, S., Chantarasiri, A., 2022. Study on the Potential for Biodiesel Production of Microalgal Consortia from Brackish Water Environment in Rayong Province, Thailand. Int. J. Renew. Energy Dev. 11, 1060–1067
  276. Usman, M., Cheng, S., Cross, J.S., 2022. Biomass Feedstocks for Liquid Biofuels Production in Hawaii & Tropical Islands: A Review. Int. J. Renew. Energy Dev. 11
  277. Vairamuthu, G., Sundarapandian, S., Kailasanathan, C., Thangagiri, B., 2016. Experimental investigation on the effects of cerium oxide nanoparticle on Calophyllum inophyllum (Punnai) biodiesel blended with diesel fuel in DI diesel engine modified by nozzle geometry. J. Energy Inst.
  278. Vani, M.V., Basha, P.O., Rajesh, N., Riazunnisa, K., 2023. Development of Chlorella pyrenoidosa EMS mutants with enhanced biomass and lipid content for biofuel production. Syst. Microbiol. Biomanufacturing 3, 693–701.
  279. Vasić, K., Hojnik Podrepšek, G., Knez, Ž., Leitgeb, M., 2020. Biodiesel Production Using Solid Acid Catalysts Based on Metal Oxides. Catalysts 10, 237.
  280. Venu, H., Appavu, P., 2020. Al2O3 nano additives blended Polanga biodiesel as a potential alternative fuel for existing unmodified DI diesel engine. Fuel 279, 118518
  281. Venu, H., Appavu, P., M, V.R., Jayaraman, J., 2022. Influence of nanoparticles on emission and performance characteristics of biodiesel-diesel blends in a DI diesel engine. Aust. J. Mech. Eng. 1–16.
  282. Venu, H., Madhavan, V., 2016. Effect of Al 2 O 3 nanoparticles in biodiesel-diesel-ethanol blends at various injection strategies: Performance, combustion and emission characteristics. Fuel 186, 176–189.
  283. Venu, H., Raju, V.D., Lingesan, S., Elahi M Soudagar, M., 2021. Influence of Al2O3nano additives in ternary fuel (diesel-biodiesel-ethanol) blends operated in a single cylinder diesel engine: Performance, combustion and emission characteristics. Energy 215, 119091.
  284. Venugopal, I.P., Balasubramanian, D., Rajarajan, A., 2021. Potential improvement in conventional diesel combustion mode on a common rail direct injection diesel engine with PODE/WCO blend as a high reactive fuel to achieve effective Soot-NOx trade-off. J. Clean. Prod. 327, 129495.
  285. Veza, I., Karaoglan, A.D., Ileri, E., Kaulani, S.A., Tamaldin, N., Latiff, Z.A., Muhamad Said, M.F., Hoang, A.T., Yatish, K.V., Idris, M., 2022. Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends. Case Stud. Therm. Eng. 31, 101817.
  286. Villegas, J.F., Ochoa, G.V., Chamorro, M.V., 2020. Statistical Wind Energy Analysis and Wind Persistence Assessment for Cordoba And Sucre Departments’ Weather Stations in The Caribbean Region of Colombia. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1760–1766.
  287. Vuong, H.L., Nguyen, D.C., Truong, T.H., Le, H.C., Nguyen, M.N., 2022. Laminar Flame Characteristics of 2,5-Dimethylfuran (DMF) Biofuel: A Comparative Review with Ethanol and Gasoline. Int. J. Renew. Energy Dev. 11, 237–254.
  288. Wambui, T., Hawi, M., Njoka, F., Kamau, J., 2023. Performance enhancement and emissions reduction in a diesel engine using oleander and croton biodiesel doped with graphene nanoparticles. Int. J. Renew. Energy Dev. 12, 635–647.
  289. Wang, H., Peng, X., Zhang, H., Yang, S., Li, H., 2021. Microorganisms-promoted biodiesel production from biomass: A review. Energy Convers. Manag. X 12, 100137
  290. Wang, S., Yao, L., 2020. Effect of Engine Speeds and Dimethyl Ether on Methyl Decanoate HCCI Combustion and Emission Characteristics Based on Low-Speed Two-Stroke Diesel Engine. Polish Marit. Res. 27, 85–95.
  291. Yadav, B., Yellapu, S.K., Adjallé, K., Drogui, P., Tyagi, R.D., 2021. Comparative study on production and characterisation of extracellular polymeric substances (EPS) using activated sludge fortified with crude glycerol from different biodiesel companies. Syst. Microbiol. Biomanufacturing 1, 208–222.
  292. Yang, X.-X., Wang, Y.-T., Yang, Y.-T., Feng, E.-Z., Luo, J., Zhang, F., Yang, W.-J., Bao, G.-R., 2018. Catalytic transesterification to biodiesel at room temperature over several solid bases. Energy Convers. Manag. 164, 112–121.
  293. Yang, Z., Tan, Q., Geng, P., 2019. Combustion and Emissions Investigation on Low-Speed Two-Stroke Marine Diesel Engine with Low Sulfur Diesel Fuel. Polish Marit. Res. 26, 153–161.
  294. Yaqoob, A.A., Umar, K., Ibrahim, M.N.M., 2020. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl. Nanosci. 10, 1369–1378
  295. Yaqoob, H., Teoh, Y.H., Jamil, M.A., Gulzar, M., 2021. Potential of tire pyrolysis oil as an alternate fuel for diesel engines: A review. J. Energy Inst. 96, 205–221.
  296. Yoro, K.O., Daramola, M.O., 2020. CO2 emission sources, greenhouse gases, and the global warming effect, in: Advances in Carbon Capture. Elsevier, pp. 3–28
  297. Yusof, S.N.A., Sidik, N.A.C., Asako, Y., Japar, W.M.A.A., Mohamed, S.B., Muhammad, N.M., 2020. A comprehensive review of the influences of nanoparticles as a fuel additive in an internal combustion engine (ICE). Nanotechnol. Rev. 9, 1326–1349.
  298. Yusuf, A.A., Ampah, J.D., Soudagar, M.E.M., Veza, I., Kingsley, U., Afrane, S., Jin, C., Liu, H., Elfasakhany, A., Buyondo, K.A., 2022a. Effects of hybrid nanoparticle additives in n-butanol/waste plastic oil/diesel blends on combustion, particulate and gaseous emissions from diesel engine evaluated with entropy-weighted PROMETHEE II and TOPSIS: Environmental and health risks of plastic wa. Energy Convers. Manag. 264, 115758
  299. Yusuf, A.A., Dandakouta, H., Yahuza, I., Yusuf, D.A., Mujtaba, M.A., El-Shafay, A.S., Soudagar, M.E.M., 2022b. Effect of low CeO2 nanoparticles dosage in biodiesel-blends on combustion parameters and toxic pollutants from common-rail diesel engine. Atmos. Pollut. Res. 13, 101305.
  300. Yuvenda, D., Sudarmanta, B., Wahjudi, A., Hirowati, R.A., 2022. Effect of Adding Combustion Air on Emission in a Diesel Dual-Fuel Engine with Crude Palm Oil Biodiesel Compressed Natural Gas Fuels. Int. J. Renew. Energy Dev. 11, 871–877.
  301. Zeńczak, W., Gromadzińska, A.K., 2020. Preliminary Analysis of the Use of Solid Biofuels in a Ship’s Power System. Polish Marit. Res. 27, 67–79.
  302. Zhang, X., Yang, R., Anburajan, P., Le, Q. Van, Alsehli, M., Xia, C., Brindhadevi, K., 2022. Assessment of hydrogen and nanoparticles blended biodiesel on the diesel engine performance and emission characteristics. Fuel 307, 121780.
  303. Zhao, R., Xu, L., Su, X., Feng, S., Li, C., Tan, Q., Wang, Z., 2020. A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines. Polish Marit. Res. 27, 80–90.
  304. Zhong, L., Feng, Y., Wang, G., Wang, Z., Bilal, M., Lv, H., Jia, S., Cui, J., 2020. Production and use of immobilized lipases in/on nanomaterials: A review from the waste to biodiesel production. Int. J. Biol. Macromol. 152, 207–222.

Last update:

No citation recorded.

Last update: 2024-05-16 19:21:58

No citation recorded.