skip to main content

Optimization of the PVT performance with various orientations of jets and MFFNN-RSA prediction model for smart buildings

1Department of Civil Engineering, College of Engineering, Shaqra University, Dawadmi, 11911 Riyadh, Saudi Arabia

2Department of Electrical Engineering, College of Engineering, Shaqra University, Saudi Arabia

3Electrical Engineering Department, Engineering College, Mansoura University, Egypt

4 Department of Mechanical Engineering, College of Engineering, Shaqra University, Dawadmi, 11911 Riyadh, Saudi Arabia

5 Department of Architecture and Building Science, College of Architecture and Planning, King Saud University, Riyadh 11421, Saudi Arabia

6 Department of Mechanical Power Engineering, Faculty of Engineering, Zagazig University, 44519 Zagazig, Egypt

View all affiliations
Received: 18 Feb 2024; Revised: 6 Apr 2024; Accepted: 15 Apr 2024; Available online: 1 May 2024; Published: 1 Jul 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The combined thermal and photovoltaic technology in PV/T systems is considered as a greatly promising technology for smart buildings. Thus, investigations for enhancing the PV/T performance are still proceeding. This research presents an investigation for novel configurations of cooling jets for the PVT system. The linear and circular distribution for the inlet jets considering regular and irregular positioning for all the jets as new cooling configurations are implemented. Moreover, the proposed geometrical configurations are optemized regarding the performance to identify the most suitable configuration that achieves the optimum efficiency and temperature. Furthermore, a novel hybrid ANN model is presented for predicting the performance of the PVT systems. This model combines the multi-feedforward neural network (MFFNN) with an optimization technique called reptile search algorithm (RSA). The proposed model can process the studied parameters to predict the PVT performance parameters (top surface temperature, temperature un-uniformity, outlet temperature, and efficiencies). The proposed MFFNN-RSA model minimized the mean square error to less than 0.4857×10-3. The maximum temperature decrease achieved by the presented configuration reached 60.62K compared to the uncooled case, while the minimum temperature un-uniformity reached 1K and 6K for 400 and 1000 W/m2, respectively. The increase of the ambient temperature found to decrease the temperature un-uniformity in all the cases. The irregular jet with the linear distribution was found to achieve the optimum performance of the overall, thermal, and electrical efficiencies of 63.5%, 49.6%, and 14.25%, respectively. Furthermore, the electricity production cost was reduced by 11.6%, and the yearly CO2 emissions were reduced by 215.3 kg/m2 compared to the normal PV system. The proposed irregular-line distribution of the jets is found to be the best configuration regarding the temperature of the PV model and the overall efficiency considering the pumping losses.

Fulltext View|Download
Keywords: PVT; ANN; MFFNN; reptile search algorithm (RSA); co-generation; thermal efficiency; electrical efficiency

Article Metrics:

  1. Abdel daiem, M. M., Hatata, A., Galal, O. H., Said, N., & Ahmed, D. (2021). Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network. Renewable Energy, 178, 226–240. https://doi.org/10.1016/J.RENENE.2021.06.050
  2. Abualigah, L., Elaziz, M. A., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. https://doi.org/10.1016/J.ESWA.2021.116158
  3. Ahmadi, M. H., Baghban, A., Salwana, E., Sadeghzadeh, M., Zamen, M., Shamshirband, S., & Kumar, R. (2019). Machine Learning Prediction Models of Electrical Efficiency of Photovoltaic-Thermal Collectors. Preprints. https://doi.org/10.20944/preprints201905.0033.v1
  4. Al-Waeli, A. H. A., Kazem, H. A., Yousif, J. H., Chaichan, M. T., & Sopian, K. (2020). Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable Energy, 145, 963–980. https://doi.org/10.1016/j.renene.2019.06.099
  5. Al-Waeli, A. H. A., Sopian, K., Yousif, J. H., Kazem, H. A., Boland, J., & Chaichan, M. T. (2019). Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study. Energy Conversion and Management, 186, 368–379. https://doi.org/10.1016/j.enconman.2019.02.066
  6. Ansys Inc. (2017). Ansys Fluent 17 Theory Guid. Ansys. https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf
  7. Baloch, A. A. B., Bahaidarah, H. M. S., Gandhidasan, P., & Al-Sulaiman, F. A. (2015). Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Conversion and Management, 103, 14–27. https://doi.org/https://doi.org/10.1016/j.enconman.2015.06.018
  8. Bayrak, F., Oztop, H. F., & Selimefendigil, F. (2019). Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy, 188, 484–494. https://doi.org/https://doi.org/10.1016/j.solener.2019.06.036
  9. Büyükalaca, O., Kılıç, H. M., Olmuş, U., Güzelel, Y. E., & Çerçi, K. N. (2023). Numerical investigation and ANN modeling of performance for hexagonal boron Nitride-water nanofluid PVT collectors. Thermal Science and Engineering Progress, 43, 101997. https://doi.org/10.1016/j.tsep.2023.101997
  10. Cao, Y., Kamrani, E., Mirzaei, S., Khandakar, A., & Vaferi, B. (2022). Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: Machine learning simulation and optimization by evolutionary algorithm. Energy Reports, 8, 24–36. https://doi.org/10.1016/j.egyr.2021.11.252
  11. Chaibi, Y., Malvoni, M., Rhafiki, T. El, Kousksou, T., & Zeraouli, Y. (2021). Artificial neural-network based model to forecast the electrical and thermal efficiencies of PVT air collector systems. Cleaner Engineering and Technology, 4, 100132. https://doi.org/10.1016/j.clet.2021.100132
  12. Delfani, S., Esmaeili, M., & Karami, M. (2019). Application of artificial neural network for performance prediction of a nanofluid-based direct absorption solar collector. Sustainable Energy Technologies and Assessments, 36, 100559. https://doi.org/10.1016/j.seta.2019.100559
  13. Dimri, N., Tiwari, A., & Tiwari, G. N. (2019). Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors. Renewable Energy, 134, 343–356. https://doi.org/10.1016/j.renene.2018.10.105
  14. Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. Wiley. https://doi.org/10.1002/9781118671603
  15. Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., & Kirpichnikova, I. (2020). Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering, 21, 100674. https://doi.org/https://doi.org/10.1016/j.csite.2020.100674
  16. Elminshawy, N. A. S., Mohamed, A. M. I., Morad, K., Elhenawy, Y., & Alrobaian, A. A. (2019). Performance of PV panel coupled with geothermal air cooling system subjected to hot climatic. Applied Thermal Engineering, 148, 1–9. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.11.027
  17. Essa, M. A., Alshqirate, A. A., & Hatata, A. Y. (2023). Analyzing the effect of normally distributed cooling channels on a photovoltaic thermal solar unit. Journal of Cleaner Production, 426, 139015. https://doi.org/10.1016/J.JCLEPRO.2023.139015
  18. Ewe, W. E., Fudholi, A., Sopian, K., Moshery, R., Asim, N., Nuriana, W., & Ibrahim, A. (2022). Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector. Energy, 254, 124366. https://doi.org/10.1016/J.ENERGY.2022.124366
  19. Gharzi, M., Arabhosseini, A., Gholami, Z., & Rahmati, M. H. (2020). Progressive cooling technologies of photovoltaic and concentrated photovoltaic modules: A review of fundamentals, thermal aspects, nanotechnology utilization and enhancing performance. Solar Energy, 211, 117–146. https://doi.org/10.1016/J.SOLENER.2020.09.048
  20. Gunasekar, N., Mohanraj, M., & Velmurugan, V. (2015). Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps. Energy, 93, 908–922. https://doi.org/10.1016/J.ENERGY.2015.09.078
  21. Hamieh, A., Rowaihy, F., Al-Juaied, M., Abo-Khatwa, A. N., Afifi, A. M., & Hoteit, H. (2022). Quantification and analysis of CO2 footprint from industrial facilities in Saudi Arabia. Energy Conversion and Management: X, 16, 100299. https://doi.org/10.1016/J.ECMX.2022.100299
  22. Hasan, H. A., Sopian, K., & Fudholi, A. (2018). Photovoltaic thermal solar water collector designed with a jet collision system. Energy, 161, 412–424. https://doi.org/10.1016/J.ENERGY.2018.07.141
  23. Javidan, M., & Moghadam, A. J. (2021). Experimental investigation on thermal management of a photovoltaic module using water-jet impingement cooling. Energy Conversion and Management, 228, 113686. https://doi.org/https://doi.org/10.1016/j.enconman.2020.113686
  24. Kalani, H., Sardarabadi, M., & Passandideh-Fard, M. (2017). Using artificial neural network models and particle swarm optimization for manner prediction of a photovoltaic thermal nanofluid based collector. Applied Thermal Engineering, 113, 1170–1177. https://doi.org/10.1016/j.applthermaleng.2016.11.105
  25. Kalateh, M. R., Kianifar, A., & Sardarabadi, M. (2022). Energy, exergy, and entropy generation analyses of a water-based photovoltaic thermal system, equipped with clockwise counter-clockwise twisted tapes: An indoor experimental study. Applied Thermal Engineering, 215, 118906. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2022.118906
  26. Kazemian, A., Khatibi, M., Ma, T., Peng, J., & Hongxing, Y. (2023). A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells. Applied Energy, 329, 120209. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.120209
  27. Khalaf, A. E., Eleiwi, M. A., & Yassen, T. A. (2023). Enhancing the overall performance of the hybrid solar photovoltaic collector by open water cycle jet-cooling. Renewable Energy, 208, 492–503. https://doi.org/10.1016/J.RENENE.2023.02.122
  28. Khan, M. K., Zafar, M. H., Rashid, S., Mansoor, M., Moosavi, S. K. R., & Sanfilippo, F. (2023). Improved Reptile Search Optimization Algorithm: Application on Regression and Classification Problems. Applied Sciences, 13(2). https://doi.org/10.3390/app13020945
  29. Koohestani, S. S., Nižetić, S., & Santamouris, M. (2023). Comparative review and evaluation of state-of-the-art photovoltaic cooling technologies. Journal of Cleaner Production, 406, 136953. https://doi.org/10.1016/J.JCLEPRO.2023.136953
  30. Leema, N., Nehemiah, H. K., & Kannan, A. (2016). Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets. Applied Soft Computing, 49, 834–844. https://doi.org/10.1016/J.ASOC.2016.08.001
  31. Li, Y., Wang, Z., Yang, J., & Liu, H. (2020). Thermal and hydraulic characteristics of microchannel heat sinks with cavities and fins based on field synergy and thermodynamic analysis. Applied Thermal Engineering, 175, 115348. https://doi.org/10.1016/J.APPLTHERMALENG.2020.115348
  32. Nahar, A., Hasanuzzaman, M., & Rahim, N. A. (2017). Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy, 144, 517–528. https://doi.org/https://doi.org/10.1016/j.solener.2017.01.041
  33. Özcan, Z., Gülgün, M., Şen, E., Çam, N. Y., & Bilir, L. (2021). Cooling channel effect on photovoltaic panel energy generation. Solar Energy, 230, 943–953. https://doi.org/10.1016/J.SOLENER.2021.10.086
  34. Patil, M., Sidramappa, A., Shetty, S. K., & Hebbale, A. M. (2023). Experimental study of solar PV/T panel to increase the energy conversion efficiency by air cooling. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.05.007
  35. Shahsavar, A., & Arıcı, M. (2023). Energy and exergy analysis and optimization of a novel heating, cooling, and electricity generation system composed of PV/T-heat pipe system and thermal wheel. Renewable Energy, 203, 394–406. https://doi.org/10.1016/J.RENENE.2022.12.071
  36. Shen, C., Zhang, Y., Zhang, C., Pu, J., Wei, S., & Dong, Y. (2021). A numerical investigation on optimization of PV/T systems with the field synergy theory. Applied Thermal Engineering, 185, 116381. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116381
  37. Song, Z., Xue, Y., Jia, B., & He, Y. (2023). Introduction of the rectangular hole plate in favor the performance of photovoltaic thermal solar air heaters with baffles. Applied Thermal Engineering, 220, 119774. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2022.119774
  38. Talaat, M., Farahat, M. A., Mansour, N., & Hatata, A. Y. (2020). Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach. Energy, 196, 117087. https://doi.org/10.1016/J.ENERGY.2020.117087
  39. Tiwari, A., Sodha, M. S., Chandra, A., & Joshi, J. C. (2006). Performance evaluation of photovoltaic thermal solar air collector for composite climate of India. Solar Energy Materials and Solar Cells, 90(2), 175–189. https://doi.org/https://doi.org/10.1016/j.solmat.2005.03.002
  40. Wei Wang Ming Li, R. H. E. H. M. en J., & Feng, Z. (2017). Optimization of thermal performance of the parabolic trough solar collector systems based on GA-BP neural network model. International Journal of Green Energy, 14(10), 819–830. https://doi.org/10.1080/15435075.2017.1333433
  41. Yanhua, L., Wengang, H., Hongwen, Y., zheng jian, & Mingxin, L. (2019). Performance and economic evaluation of evacuated tube solar collector with auxiliary electric heater for rural heating. Energy Procedia, 158, 186–191. https://doi.org/https://doi.org/10.1016/j.egypro.2019.01.068
  42. Yildirim, M. A., Cebula, A., & Sułowicz, M. (2022). A cooling design for photovoltaic panels – Water-based PV/T system. Energy, 256, 124654. https://doi.org/https://doi.org/10.1016/j.energy.2022.124654
  43. Yousif, J. H., Kazem, H. A., Alattar, N. N., & Elhassan, I. I. (2019). A comparison study based on artificial neural network for assessing PV/T solar energy production. Case Studies in Thermal Engineering, 13, 100407. https://doi.org/10.1016/J.CSITE.2019.100407
  44. Yuan, Q., Zhang, Y., Dai, X., & Zhang, S. (2022). A Modified Reptile Search Algorithm for Numerical Optimization Problems. Computational Intelligence and Neuroscience, 2022, 9752003. https://doi.org/10.1155/2022/9752003
  45. Zhang, Q., He, S., Song, T., Wang, M., Liu, Z., Zhao, J., Gao, Q., Huang, X., Han, K., Qi, J., Gao, M., & Shi, Y. (2023). Modeling of a PV system by a back-mounted spray cooling section for performance improvement. Applied Energy, 332, 120532. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.120532
  46. Zhang, Y., Shen, C., Zhang, C., Pu, J., Yang, Q., & Sun, C. (2022). A novel porous channel to optimize the cooling performance of PV modules. Energy and Built Environment, 3(2), 210–225. https://doi.org/https://doi.org/10.1016/j.enbenv.2021.01.003

Last update:

No citation recorded.

Last update: 2025-04-22 18:20:51

No citation recorded.