skip to main content

Tidal current power in Capalulu strait, North Maluku: A feasibility study

1Ocean Engineering Program, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha No.10, Lb. Siliwangi, Bandung, Jawa Barat 40132, Indonesia

2School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom

3Mechanical Enginering Program, Sekolah Tinggi Teknologi Angkatan Laut, Jl. Bumi Moro, Morokrembangan, Surabaya, Jawa Timur 60178, Indonesia

Received: 6 Aug 2023; Revised: 16 Feb 2024; Accepted: 12 Mar 2024; Available online: 20 Mar 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The Indonesian government has set goals for increasing the use of renewable energy in the coming years. Currently, Indonesia relies heavily on non-renewable energy sources, which poses a threat to the environment due to the country's growing energy needs. This study aims to assess the potential for developing a tidal power plant in Capalulu Strait, North Maluku. Using hydrodynamic modelling, the study identified two potential locations at coordinates 1.877°S – 125.328°E (Capa-2) and 1.863°S – 125.323°E (Capa-4) which were selected for having median current speeds exceeding 1.8 m/s and maximum current speeds exceeding 3.5 m/s. The study tested a hypothetical implementation of KHPS Gen5 instrument(s) by Verdant Power, a 5 m diameter turbine with a rated nominal power of 37 kW and a maximum rated power of 56 kW. A power plant layout was designed to be placed at Capa-2 and Capa-4, each location accommodating 45 turbines. The development of this power plant is estimated to produce up to 22 GWh per year. Financial analysis resulted in a LCOE of IDR 5,930/kWh. However, this price is still high compared to the national electricity tariff of IDR 1,027.70/kWh. Variations in the number of turbines also may not result in a lower LCOE than the national tariff. Nevertheless, the estimated cost of generating electricity is still competitive compared to diesel, which is around IDR 5,804/kWh.

Fulltext View|Download
Keywords: Renewable Energy; Tidal Current; Hydrodynamic Modelling; LCOE; Capalulu Strait

Article Metrics:

  1. Adcock, T.A.A. & Draper, S. (2014). Power extraction from tidal channels-Multiple tidal constituents, compound tides and overtides. Renew. Energy, 63, 797–806.
  2. Adcock, T.A.A., Draper, S., & Nishino, T. (2015). Tidal power generation – A review of hydrodynamic modelling. Proceedings of the Institution of Mechanical Engineers, Part A. Journal of Power and Energy, 229(7):755-771.
  3. Ajiwibowo, H., & Pratama, M.B. (2022) Hydrodynamic Model and Tidal Current Energy Potential in Lepar Strait, Indonesia. International Journal of Renewable Energy Development, 11(1),15-25.
  4. Ajiwibowo, H., Lodiwa, K.S., Pratama, M.B., & Wurjanto, A. (2017a) Field Measurement and Numerical Modeling of Tidal Current in Larantuka Strait for Renewable Energy Utilization. International Journal of Geomate, 13(39), 15-25.
  5. Ajiwibowo, H., Lodiwa, K.S., Pratama, M.B., & Wurjanto, A. (2017b) Numerical Model of Tidal Current for Power harvesting in Bangka Strait. International Journal of Earth Sciences and Engineering, 10(4), 3100-3110.
  6. ASELI. (2014). Potensi Energi Laut Indonesia. Asosiasi Energi Laut Indonesia
  7. BIG (2018). Badan Informasi Geospasial - Batimetri Nasional. [Online], . Accessed on 3 August 2023
  8. Blunden, L.S., Bahaj, A.S., & Aziz, N.S. (2013). Tidal current power for Indonesia? An initial resource estimation for the Alas Strait. Renew. Energy 49:137–142.
  9. Brown, A.J.G., Lewis, M., Barton, B.I., Jeans, G., & Spall, S.A. (2019). Investigation of the Modulation of the Tidal Stream Resource by Ocean Currents through a Complex Tidal Channel. Journal of Marine Science and Engineering, 7(10). 341.
  10. Databoks (2023). Rasio-Elektrifikasi, [Online], . Accessed on 20th Jan 2024
  11. Deltares. 2014. Delft3D Flow – User Manual. Netherland
  12. Dreyer, S. J., Polis, H. J., Jenkins, L. D. (2017). Changing Tides: Acceptability, support, and perceptions of tidal energy in the United States, Energy Research & Social Science, 29,2017,72-83,
  13. Egbert, G.D., & Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology 19.2 (2002): 183-204.;2
  14. Feng, M., Zhang, N., Liu, Q., Wijffels, S. (2018). The Indonesian throughflow, its variability and centennial change. Geosci. Lett. 5, 3.
  15. Firdaus, A.M., Houlsby, G.T. & Adcock, T.A.A. (2017). Opportunities for tidal stream energy in Indonesian Waters. Proceedings of the 12th EWTEC, Cork: Ireland.
  16. Firdaus, A.M., Houlsby, G.T., & Adcock, T.A.A. (2019). Resource estimates in Lombok Straits , Indonesia. Proceedings of the 13th European Wave and Tidal Energy Conference, September, 1669.
  17. Firdaus, A.M., Houlsby, G.T., & Adcock, T.A.A. (2020). Tidal energy resource in Larantuka Strait, Indonesia. Energy, 173(2), 81–92.
  18. Gordon, A.L., Sprintall, J., Van Aken, H.M., Susanto, D., Wijffels, S., Molcard, R., Ffield, A., Pranowo, W., Wirasantosa, S. (2010). The Indonesian throughflow during 2004–2006 as observed by the INSTANT program. Dyn Atmos Ocean 50:115–128.
  19. Hanley, N. & Nevin, C. (1999). Appraising renewable energy developments in remote communities: the case of the North Assynt Estate, Scotland. Energy Policy, 27(9), 527-547.
  20. Hasan, G.J., Kurniawan, A., Ooi, S.K., Hekstra, M., Broekema, Y.B., & Bayen, S. (2015). Pollutants in mangrove ecosystems: A conceptual model for evaluating residence time. Proceeding of ICWFM 2015: 5th International Conference on Water & Flood Management
  21. Houlsby, G. & Christopher, V. (2016). The power available to tidal turbines in an open channel flow. Proceedings of the Institution of Civil Engineers - Energy. 170:1, 12-21.
  22. IEA (2020), International Energy Agency - Ocean Energy Systems, [Online]. , Accessed 20 January 2024
  23. IESR (2022). Indonesia Energy Transition Outlook 2023: Tracking Progress of Energy Transition in Indonesia: Pursuing Energy Security in the Time of Transition. Jakarta: Institute for Essential Services Reform (IESR).
  24. Indonesian Government (2014). Indonesian Government Legislation No. 79 of 2014 on National Energy Policy.
  25. Khare, V. & Bhuiyan, M.A. (2022). Tidal energy-path towards sustainable energy: A technical review, Cleaner Energy Systems, 3(2022), 100041.
  26. Kurniawan, A., Barli, P.P.A., Pratama, M.B., & Fitriadhy, A. (2021a). Potential Study of Tidal Stream Turbine Farm at Toyapakeh Strait, Bali. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 26(3), 155–162.
  27. Kurniawan, A., Satria, R.A., Pratama, M.B. (2020). Analyzing Tsunami Hazard using Numerical Modelling: Study Case Palu, Sulawesi Tengah, Indonesia. IOP Conference Series: Materials Science and Engineering 982 (1), 012036.
  28. Kurniawan, A., Tay, S.H.X. & Ooi, S.K. (2021b). Numerical investigation of tide and sea level anomalies propagation in Malacca Strait. Terr. Atmos. Ocean. Sci., 32, 571-582.
  29. Kurniawan, A., Wisha, U.J., Husrin, S., Karjadi, E.A. (2017). Tidal Bore Generation at the Estuaries of The East Coast of Sumatra. Proceeding of The 37th IAHR World Congress 2, 3587.
  30. Kusuma, C. (2021). Tidal Flow Renewable Energy Potential in the Capalulu Strait. IOP Conf. Ser.: Mater. Sci. Eng., (1052).
  31. Lazard. (2014). Lazard’s Levelized Cost of Energy Analysis – Version 8.0. Lazard.
  32. Lesser, G.R., Roelvink, J.A., van Kester, J.A.T.M., & Stelling, G.S. (2004) Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8-9), 883-915.
  33. Martin, R.J., Kurniawan, A., Nugroho, E.O., Wijaya, F.S., Muhammad, I.F. & Fauzi N. (2022). The effect of land subsidence on hydrodynamic conditions in Pekalongan coast. IOP Conference Series: Earth and Environmental Science 1065 (1), 012009.
  34. Mateos, L.F., & Hartnett, M. (2020). Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions. Energies 2020, 13, 3240.
  35. MEMR. (2020). Ministry of Energy and Mineral Resources Bill No. 4 of 2020 on the Second Revision of Bill No. 50 of 2017 on Utilization of Renewable Energy Sources for the Provision of Electric Power. [Online], . Accessed on 4 November 2023
  36. Navionics (2022). Navionics Web Application. [Online], . Accessed on 3 August 2023
  37. Neill, S.P., Haas, K.A., Thiébot, J. & Yang, Z. (2021). A review of tidal energy—Resource, feedbacks, and environmental interactions. Journal of Renewable and Sustainable Energy, 13, 062702.
  38. Novico, F., Sudjono, E. H., Egon, A., Menier, D., Methew, M., & Pratama, M. B. (2021). Tidal Current Energy Resources Assessment in the Patinti Strait, Indonesia. International Journal of Renewable Energy Development, 10(3), 517–525.
  39. Orhan, K. & Mayerle, R. (2017). Assessment of the tidal stream power potential and impacts of tidal current turbines in the Strait of Larantuka, Indonesia. Energy Procedia 125:230–239.
  40. Orhan, K. & Mayerle, R. (2020). Potential Hydrodynamic Impacts and Performances of Commercial-Scale Turbine Arrays in the Strait of Larantuka, Indonesia. J. Mar. Sci. Eng., 2020, 8, 223.
  41. Orhan, K., Mayerle, R., & Widodo, W. (2015). Assessment of energy production potential from tidal stream currents in Indonesia. Energy Procedia, 76:7–16.
  42. Orhan, K., Mayerle, R., Narayanan, R., & Pandoe, W. (2016) Investigation of the energy potential from tidal stream currents in Indonesia. Coastal Engineering Proceedings, 1(35), management.10.
  43. Pratama (2020). Modelling Tidal Energy Extraction in Sunda Strait, Indonesia. Master Thesis: The University of Edinburgh, UK
  44. Pratama, M. B., Venugopal, V., Ajiwibowo, H., Ginting, J. W., & Novico, F. (2020). Modelling Tidal Flow Hydrodynamics of Sunda Strait, Indonesia. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 25(4), 165–172.
  45. Purba, N.P., Kelvin, J., Sandro, R., Gibran, S., Permata, R.A.I., Maulida, F., & Martasuganda, M.K. (2015). Suitable Locations of Ocean Renewable Energy (ORE) in Indonesia Region – GIS Approached, Energy Procedia 65:230-238,
  46. Quirapas, M.A.J.R. & Taeihagh, A. (2021). Ocean renewable energy development in Southeast Asia: Opportunities, risks and unintended consequences, Renewable and Sustainable Energy Reviews, 137, 110403,
  47. Ramachandran, R., Kularathna, A.H.T.S., Matsuda, H. & Takagi. K. (2021). Information flow to increase support for tidal energy development in remote islands of a developing country: agent-based simulation of information flow in Flores Timur Regency, Indonesia. Energ Sustain Soc 11, 26.
  48. Sprintall, J., Wijffels, S.E., Molcard, R., Jaya, I. (2009). Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004–2006. J Geophys Res 114:C07001.
  49. Transtimur (2023). Pemadaman Listrik di Desa Kou Kecamatan Mangoli Timur Kabupaten Kepulauan Sula Maluku Utara, [Online], . Accessed on 20th Jan 2024
  50. Verdant Power. (2019). Final License Application for New License Rosevelt Island Tidal Energy Project FERC No. 12611 Exhibit E Environmental Report. New York: Verdant Power
  51. Walker, S. & Thies, P.R. (2021). A review of component and system reliability in tidal turbine deployments, Renewable and Sustainable Energy Reviews, 151(2021),
  52. Wijaya, F.S., Kurniawan, A., Yuanita, N., Nugroho, E.O. & Martin, R.J. (2022). Numerical modelling of land subsidence effect on coastal sediment transport in Pekalongan. IOP Conference Series: Earth and Environmental Science 1065 (1), 012022.
  53. Wilberforce, T., Hassan, Z.E., Durrant, A., Thompson, J., Soudan, B., & Olabi, A. G. (2019). Overview of ocean power technology, Energy, (175), 165-181,

Last update:

No citation recorded.

Last update: 2024-05-16 23:05:24

No citation recorded.