skip to main content

Frequency control enhancement for hybrid microgrid using multi-terminal multi-function inverter

1National Research Institute of Astronomy and Geophysics (NRIAG), Astronomy Department, Cairo, 11421, Egypt

2Faculty of Engineering, Helwan University, Department of Electrical Power and Machines Engineering, Cairo, 11792, Egypt

3College of Engineering, Prince Sattam Bin Abdulaziz University, Department of Electrical Engineering, Al-Kharj, 11942, Saudi Arabia

Received: 26 Feb 2024; Revised: 17 Apr 2024; Accepted: 12 May 2024; Available online: 15 May 2024; Published: 1 Jul 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Renewable energy sources (RESs) are considered a crucial energy transformation to reduce carbon emissions, so more RESs are being integrated into contemporary power systems. Power electronic converters are extensively utilized to connect power grids with renewable generators to manage the fluctuations and unpredictability of these renewable energy sources. This paper introduces a multi-terminal multi-function inverter (MT-MF) designed for a battery energy storage system (BESS) to maintain the frequency stability of a hybrid microgrid (MG). The MG comprises a photovoltaic generation system, a diesel generator, BESS, and two loads: one constant load and the other variable, fed through a medium-voltage radial feeding system. An introduced approach involves utilizing a model predictive control controlled virtual synchronous generator (MPC-VSG) for BESS. This method offers inertia support during transient states and improves the dynamic characteristics of system frequency. In addition, it enables the connection of multiple batteries, provides individualized control for each, and supports the injection of reactive power into the MG. The required power from the BESS is shared between the two batteries using the low pass filter technique. The simulation outcomes affirm the proposed control strategy’s effectiveness and underscore the MT-MF inverter approach’s potential in integrating extensive RESs. This paper also explores how the proposed technique outperforms other methods in improving frequency stability.

Fulltext View|Download
Keywords: Frequency Stability; Microgrids; Photovoltaic generation; renewable energy; Virtual Synchronous Generator; storage Battery; Grid Integration; nonlinear controller

Article Metrics:

  1. Alberto, B., Alberto, N. C., Mario, P., Gaetano, C., & Aurelio, S. (2011). Synchronized Phasors Monitoring During the Islanding Maneuver of an Active Distribution Network. IEEE Transactions on Smart Grid, 2(1), 82-91. https://doi.org/10.1109/ISGT.2010.5434733
  2. Alessandro, G., Emanuele, D., & Alessandro, D. (2019). Model Predictive Control of Energy Storage Systems for Power Regulation in Electricity Distribution Networks. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 3365-3370. https://doi.org/10.1109/SMC.2019.8914059
  3. Babqi, Abdulrahman J. 2022. ‘A Novel Model Predictive Control for Stability Improvement of Small Scaled Zero-Inertia Multiple DGs Micro-Grid’. Periodica Polytechnica Electrical Engineering and Computer Science 66(2):163–73. https://doi.org/10.3311/PPee.19232
  4. Beck, H.-P., & Hesse, R. (2007, October 9-11). Virtual synchronous machine. 2007 9th International Conference on Electrical Power Quality and Utilisation, 1-7. https://doi.org/10.1109/EPQU.2007.4424220
  5. Benhamed, S. I. (2016). Dynamic modeling of diesel generator based on electrical and mechanical aspects. 2016 IEEE Electrical Power and Energy Conference (EPEC), (pp. 1-6). https://doi.org/10.1109/EPEC.2016.7771756
  6. Bø, T. I., & Johansen, T. A. (2017). Battery Power Smoothing Control in a Marine Electric Power Plant Using Nonlinear Model Predictive Contro. IEEE Transactions on Control Systems Technology, 25(4), 1449-1456. https://doi.org/10.1109/TCST.2016.2601301
  7. Eid, D., Elmasry, S., El Samahy, A. E., & Youssef, E. (2022, November 7-9). Optimal virtual synchronous generator control of AC/DC matrix converter-based PV grid- connected systems. 13th Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER 2022, 2022, 88-93. https://doi.org/10.1049/icp.2022.3308
  8. Elwakil, M. M., Zoghaby, H. M. El, Sharaf, S. M., & Mosa, M. A. (2023). “Adaptive virtual synchronous generator control using optimized bang-bang for Islanded microgrid stability improvement”. Protection and Control of Modern Power Systems, 8(1), 57. https://doi.org/10.1186/s41601-023-00333-7
  9. Felix, G. T., Carlos, B., & Miguel A., R. (2019). Optimal Economic Schedule for a Network of Microgrids With Hybrid Energy Storage System Using Distributed Model Predictive Contro. {IEEE Transactions on Industrial Electronics, 66(3), 1919-1929. . https://doi.org/10.1109/TIE.2018.2826476
  10. Gauthier, D., Bruno, F., & Gilles, M. (2012). Dynamic Frequency Control Support by Energy Storage to Reduce the Impact of Wind and Solar Generation on Isolated Power System's Inertia. IEEE Transactions on Sustainable Energy, 3(4), 931-939. https://doi.org/10.1109/TSTE.2012.2205025
  11. Ghodsi, M. R., Tavakoli, A., & Samanfar, A. (2022). 'Microgrid Stability Improvement Using a Deep Neural Network Controller Based VSG. International Transactions on Electrical Energy Systems, 2022(5), 1-17. https://doi.org/10.1155/2022/7539173
  12. Hassanzadeh, M. E., Nayeripour, M., Hasanvand, S., & Waffenschmidt, E. (2020). Decentralized control strategy to improve dynamic performance of micro-grid and reduce regional interactions using BESS in the presence of renewable energy resources. Journal of Energy Storage, 31, 101520. https://doi.org/10.1016/j.est.2020.101520
  13. Hirase, Y., Abe, K., Sugimoto, K., Sakimoto, K., Bevrani, H., & Ise, T. (2018). A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids. Applied Energy, 210, 699-710. https://doi.org/10.1016/j.apenergy.2017.06.058
  14. Huijie, C., Zhikang, S., Chao, S., ,Xuan, L., Zuy, L., & Z. John, S. (2020). Transient Angle Stability of Paralleled Synchronous and Virtual Synchronous Generators in Islanded Microgrids. IEEE Transactions on Power Electronics, 35(8), 8751-8765. https://doi.org/10.1109/TPEL.2020.2965152
  15. Jongudomkarn, J. (2020). Model Predictive Control for Indirect Boost Matrix Converter Based on Virtual Synchronous Generator. IEEE Access, 8, 60364-60381. https://doi: 10.1109/ACCESS.2020.2983115
  16. Kazem, H. A., Albadi, M. H., Al-Waeli, A. H., Al-Busaidi, A. H., & Chaichan, M. T. (2017). Techno-economic feasibility analysis of 1MW photovoltaic grid connected system in Oman. Case Studies in Thermal Engineering, 10, 131-141. https://doi.org/10.1016/j.csite.2017.05.008
  17. Kerdphol, T., Rahman, F. S., Watanabe, M., & Mitani, Y. (2020). Virtual Inertia Synthesis and Control. Springer International Publishing. Retrieved February 18, 2024
  18. Khooban, M. H., Niknam, T., Blaabjerg, F., & Dragicevic, T. (2017). A new load frequency control strategy for micro-grids with considering electrical vehicles. Electric Power Systems Research, 143, 585-598. https://doi.org/10.1016/j.epsr.2016.10.057
  19. Li, Y., Li, G., Li, Q., Jin, N., Hu, S., Guo, L., & Liu, J. (2019). Model Predictive Control of Grid-connected Converter Based on Virtual Synchronous Machine. 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), 1294–1298. https://doi.org/10.1109/APAP47170.2019.9224930
  20. Linbin, H., Huanhai, X., Zhen, W., Kuayu, W., Haijiao, W., Jiabing, H., & Cencen, L. (2017). A Virtual Synchronous Control for Voltage-Source Converters Utilizing Dynamics of DC-Link Capacitor to Realize Self-Synchronization. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(4), 1565-1577. https://doi.org/10.1109/JESTPE.2017.2740424
  21. Liu, J., Miura, Y., & Ise, T. (2016). Comparison of Dynamic Characteristics Between Virtual Synchronous Generator and Droop Control in Inverter-Based Distributed Generators. IEEE Transactions on Power Electronics, 31(5), 3600-3611. https://doi.org/10.1109/TPEL.2015.2465852
  22. Long, Bo, Yong Liao, Kil To Chong, Jose Rodriguez, and Josep M. Guerrero. 2021. ‘MPC-Controlled Virtual Synchronous Generator to Enhance Frequency and Voltage Dynamic Performance in Islanded Microgrids’. IEEE Transactions on Smart Grid 12(2):953–64. https://doi.org/10.1109/TSG.2020.3027051
  23. Rosewater, D. M., Copp, D. A., Nguyen, T. A., Byrne, R. H., & Santoso, S. (2019). Battery Energy Storage Models for Optimal Control. IEEE Access, 7, 178357–178391. https://doi.org/10.1109/ACCESS.2019.2957698
  24. Ma C, S. J. (2023). Transient Stability Enhancement Strategy for Islanded Microgrids Based on Energy Storage–Virtual Synchronous Machine Control. Energies, 16(17), 6390. doi: https://doi.org/10.3390/en16176390
  25. Mostafa, F., A., C. C., W., S.-P. J., Ehsan, N., Lingling, F., A., M.-A. P., . . . Jim, R. (2020). Microgrid Stability Definitions, Analysis, and Examples. IEEE Transactions on Power Systems, 35(1), 13-29. https://doi.org/10.1109/TPWRS.2019.2925703
  26. Mukund R. Patel, Omid Beik. (1999). Wind and solar energy. CRC Press. LLC. https://doi.org/10.1201/9781003042952
  27. Mohamed, M. M., El Zoghby, H. M., Sharaf, S. M., & Mosa, M. A. (2022). Optimal virtual synchronous generator control of battery/supercapacitor hybrid energy storage system for frequency response enhancement of photovoltaic/diesel microgrid. Journal of Energy Storage, 51, 104317. https://doi.org/10.1016/j.est.2022.104317
  28. Oulcaid, M., El Fadil, H., Yahya, A., & Giri, F. (2016). Maximum Power Point Tracking Algorithm for Photovoltaic Systems under Partial Shaded Conditions. IFAC-PapersOnLine, 49(13), 217-222. https://doi.org/10.1016/j.ifacol.2016.07.954
  29. Podder, A. K., Roy, N. K., & Pota, H. R. (2019). MPPT methods for solar PV systems: a critical review based on tracking nature. IET Renewable Power Generation, 13(10), 1615–1632. https://doi.org/10.1049/iet-rpg.2018.5946
  30. Pratap, A., Ziadi, Z., Urasaki, N., & Senjyu, T. (2015). Smoothing of Wind Power Fluctuations for Permanent Magnet Synchronous Generator-Based Wind Energy Conversion System and Fault Ride-through Consideration. Electric Power Components and Systems, 43(3), 271-281. https://doi.org/10.1080/15325008.2014.983620
  31. Rodriguez, J. a.-R. (2019). State of the Art of Finite Control Set Model Predictive Control in Power Electronics. IEEE Transactions on Industrial Informatics, 9(2), 1003-1016. https://doi.org/10.1109/TII.2012.2221469
  32. Rodríguez, P., Citro, C., Candela, J., Rocabert, J., & Luna, A. (2018). Flexible Grid Connection and Islanding of SPC-Based PV Power Converters. IEEE Transactions on Industry Applications, 24(3), 2690-2702. https://doi.org/10.1109/TIA.2018.2800683
  33. Saleh A, H. H. (2023). Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids. Sustainability, 15(6), 5009. https://doi.org/10.3390/su15065009
  34. Sati, S. E., Al-Durra, A., Zeineldin, H., EL-Fouly, T. H. M., & El-Saadany, E. F. (2024). A novel virtual inertia-based damping stabilizer for frequency control enhancement for islanded microgrid. International Journal of Electrical Power & Energy Systems, 155, 109580. https://doi.org/10.1016/j.ijepes.2023.109580
  35. Sikder, P. S., & Pal, N. (2020). Modeling of an intelligent battery controller for standalone solar-wind hybrid distributed generation system. Journal of King Saud University - Engineering Sciences, 32(6), 368–377. https://doi.org/10.1016/j.jksues.2019.02.002
  36. Stadler, M., & Naslé, A. (2019). Planning and implementation of bankable microgrids. The Electricity Journal, 32(5), 24-29. https://doi.org/10.1016/j.tej.2019.05.004
  37. Tremblay O, D. L.-A. (2009). Experimental Validation of a Battery Dynamic Model for EV Applications. World Electric Vehicle Journal, 3(2), 289-298. doi: https://doi.org/10.3390/wevj3020289
  38. Ur Rehman, H., Yan, X., Abdelbaky, M. A., Jan, M. U., & Iqbal, S. (2021). An advanced virtual synchronous generator control technique for frequency regulation of grid-connected PV system. International Journal of Electrical Power & Energy Systems, 125, 106440. https://doi.org/10.1016/j.ijepes.2020.106440
  39. Yousef, M. Y., Mosa, M. A., Ali, A. .., & El Masry, S. M. (2021). Frequency response enhancement of an AC micro-grid has renewable energy resources based generators using inertia controller. Electric Power Systems Research, 196, 107194. https://doi.org/10.1016/j.epsr.2021.107194
  40. Youssef E, C. P. (2020). Direct Power Control of a Single Stage Current Source Inverter Grid-Tied PV System. Energies, 13(12), 3165. doi: https://doi.org/10.3390/en13123165
  41. Youssef, E., Pinto, S. F., Amin, A., & El Samahy, A. E. (2019). Multi-Terminal Matrix Converters as Enablers for Compact Battery Management Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, 1, 1874-1879. https://doi.org/10.1109/IECON.2019.8926823
  42. Zhang, X., Gao, Q., Guo, Z., Zhang, H., Li, M., & Li, F. (2020). Coordinated control strategy for a PV-storage grid-connected system based on a virtual synchronous generator. Global Energy Interconnection, 3(1), 51-59. https://doi.org/10.1016/j.gloei.2020.03.003
  43. Zhikang, S., Chao, S., Xuan, L., Zuyi, L., & Z. John, S. (2019). Transient Angle Stability of Virtual Synchronous Generators Using Lyapunov’s Direct Method. IEEE Transactions on Smart Grid, 10(4), 4648-4661. https://doi.org/10.1109/TSG.2018.2866122
  44. Zhong, C., Li, H., Zhou, Y., Lv, Y., Chen, J., & Li, Y. (2022). Virtual synchronous generator of PV generation without energy storage for frequency support in autonomous microgrid. International Journal of Electrical Power & amp; Energy Systems, 134, 107343. Retrieved from https://doi.org/10.1016%2Fj.ijepes.2021.107343
  45. Zhong, Q.-C., & Weiss, G. (2011). Synchronverters: Inverters That Mimic Synchronous Generators. IEEE Transactions on Industrial Electronics, 58(4), 1259-1267. https://doi.org/10.1109/TIE.2010.2048839

Last update:

No citation recorded.

Last update: 2024-10-05 04:01:16

No citation recorded.