skip to main content

Virtual oscillator with delayed feedback for transient mitigation in inverter-based islanded microgrids

1Department of Electrical Engineering, School of Engineering, Cochin University of Science and Technology, Kerala, India

2Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Kerala, India

Received: 27 Feb 2024; Revised: 16 May 2024; Accepted: 27 May 2024; Available online: 1 Jun 2024; Published: 1 Jul 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

In recent years, the conventional control schemes for renewable energy-based inverter-dominated microgrids have been expeditiously replaced by Virtual Oscillator-based Control (VOC). The method of VOC ensures fast synchronisation and efficient load-sharing capabilities in inverter-based renewable energy systems. This work evaluates the effectiveness of VOC-based inverters in mitigating the transient dynamics of power system parameters like voltage, frequency and current under different types of switching events involving active and reactive load combinations. Further, to enhance the control efficiency of VOC under such load-switching scenarios a modified form of VOC is proposed utilizing the ability of the feedback mechanism to strengthen the state space trajectory of dynamical systems. In the proposed method, the control oscillator of conventional VOC driven by the inverter current is modified by providing a feedback signal in the form of an integral function of the error between the drive oscillator and the trajectory of the inverter output. The efficiencies of different forms of feedback are quantified in terms of percentage deviation in power system parameters as well as THD. The proposed feedback strategy can improve the control performance by bringing down the voltage deviation from 57 % in conventional VOC to around 4%. Likewise, the frequency deviation is brought down to 0.14% from 19.26 %. These advantages are achieved without any significant adverse impact on the THD. The proposed approach can be utilized in multi-inverter-based systems serving sensitive loads in microgrids.

Fulltext View|Download
Keywords: Delayed feedback; Islanded microgrids; Transient dynamics; Van der Pol (VdP) oscillator; Virtual Oscillator Control (VOC)

Article Metrics:

  1. Aghdam, S. A., & Agamy, M. (2022). Virtual oscillator-based methods for grid-forming inverter control: A review, IET Renewable Power Generation, 16(5), 835-855. https://doi.org/10.1049/rpg2.12398
  2. Aguilar-López, R., Mata-Machuca, J.L.(2013). Stabilization of a chaotic oscillator via a class of integral controllers under input saturation. Sci Rep 13, 5927; https://doi.org/10.1038/s41598-023-33201-3
  3. Alghamdi, B. & Cañizares, C.(2022).Frequency and voltage coordinated control of a grid of AC/DC microgrids, Applied Energy; https://doi.org/10.1016/j.apenergy.2021.118427
  4. Alotaibi, A., Alkandri, A. and Alsubaie, M. (2021). Load Disturbance Conditions for Current Error Feedback and Past Error Feedforward State-Feedback Iterative Learning Control. Intelligent Control and Automation, 12, 65-72; https://doi: 10.4236/ica.2021.122004
  5. Astrada, J. & Angelo,C.D. (2022). Double virtual - impedance loop for inverters with repetitive and droop control in UPS applications, Electric Power Systems Research, 204, 107680; https://doi.org/10.1016/j.epsr.2021.107680
  6. Awad, E. A., & Badran, E. A. (2020). Mitigation of transient overvoltages in microgrid including PV arrays. IET Generation,Transmission & Distribution,14(15),2959-2967; https://doi.org/10.1049/iet-td.2019.1035
  7. Bollen M. H. J., Styvaktakis E & H. Gu I. Y.(2005), Categorization and analysis of power system transients, IEEE Trans. Power Del., vol. 20,no. 3, pp. 2298–2306, Jul.; doi: 10.1109/TPWRD.2004.843386
  8. Costa, D.A, Tôrres, L.A.B, Silva, S.M, De Conti, A. & Brandão, D.I.(2021). Parameter Selection for the Virtual Oscillator Control Applied to Microgrids. Energies,14(7):1818; https://doi.org/10.3390/en14071818
  9. Fan, P., Ke, S., Kamel, S., Yang, J., Li, Y., Xiao, J., Xu, B. & Rashed G.I.(2022). A Frequency and Voltage Coordinated Control Strategy of Island Microgrid including Electric Vehicles. Electronics, 11(1):17; https://doi.org/10.3390/electronics11010017
  10. Guo,X., Kang, P., Yang, G., Song, P.& Shi, Y..(2023) J. Phys.: Conf. Ser. 2488 012044; https://doi.org/ 10.1088/1742-6596/2488/1/012044
  11. Gurugubelli, V., Ghosh, A. & Panda, A.K (2022). A new virtual oscillator control for synchronization of single-phase parallel inverters in islanded microgrid, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44:4, 8842-8859, https://doi.org/ 10.1080/15567036.2022.2126560
  12. Gurugubelli, V., Ghosh, A., Panda, A. K., & Rudra, S. (2021). Implementation and comparison of droop control, virtual synchronous machine, and virtual oscillator control for parallel inverters in standalone microgrid. International Transactions on Electrical Energy Systems, 31(5), e12859; https://doi.org/10.1002/2050-7038.12859
  13. Hakimi, A.R. , Azhdari, M. &Binazadeh, T.(2021).Limit cycle oscillator in nonlinear systems with multiple time delays, Chaos, Solitons & Fractals, 153(2),111454; https://doi.org/10.1016/j.chaos.2021.111454
  14. Han, Y., Ye,H., Guo,Z., Zhao,J., Pei,W. & Xiong,J.(2023). Control strategy of virtual oscillators with adjustable tie line power in interconnected system, Energy Reports, 9(2), 359-367; https://doi.org/10.1016/j.egyr.2023.03.043
  15. Hlali, M. , Bahri , I., Belloumi, H.& Kourda, F.(2019).Comparative analysis of PI and PR based Current Controllers for Grid Connected Photovoltaic Micro-inverters, Proc. of the 10th International Renewable Energy Congress ; https://doi.org/10.1109/IREC.2019.8754522
  16. Howard, R.M. (2022). Arbitrarily Accurate Analytical Approximations for the Error Function. Mathematical and Computational Applications.; 27(1):14; https://doi.org/10.3390/mca27010014
  17. IEEE Standard 1159-2019, IEEE Recommended Practice for Monitoring Electric Power Quality, pp. 1–98; doi: 10.1109
  18. IEEE Std C62.41-1991, IEEE Recommended Practice for Surge Voltages in Low-Voltage AC Power Circuits, vol., no., pp.1-112; doi: 10.1109/IEEESTD.1991.101029
  19. Jalil, M.W, Ishtiaque, W. & Arif, A. ( 2023). A Review of Islanding Detection Techniques for Inverter-Based Distributed Generation, Engineering Proceedings; 46(1): 40. https://doi.org/10.3390/engproc2023046040
  20. Jiang, X., He ,C. & Jermsittiparsert, K.(2020). Online optimal stationary reference frame controller for inverter interfaced distributed generation in a microgrid system, Energy Reports, 6, 134–145; https://doi.org/10.1016/j.egyr.2019.12.016
  21. Johnson, B. B. , Sinha, M., Ainsworth, N. G., Dörfler, F. & Dhople, S. V.(2016). Synthesizing Virtual Oscillators to Control Islanded Inverters, IEEE Transactions on Power Electronics, 31( 8), 6002- 6015; https://doi.org/10.1109/TPEL.2015.2497217
  22. Johnson, B.B., Dhople,S.V., Hamadeh,A.O. & Krein,P.T. (2014).Synchronization of Parallel Single-Phase Inverters With Virtual Oscillator Control, IEEE Transactions on Power Electronics, 29(11), 6124 – 6138; https://doi.org/10.1109/TPEL.2013.2296292
  23. Joshi, S.K., Sen, S., Kar, I.N. (2016). “Synchronization of coupled oscillator dynamics” IFAC-Papers OnLine, 49(1), 320–325; https://doi.org/10.1016/j.ifacol.2016.03.073
  24. Kashchenko S. (2023), Van der Pol Equation with a Large Feedback Delay. Mathematics; 11(6):1301. https://doi.org/10.3390/math11061301
  25. Khetrapal, P.(2020). Distributed Generation: A Critical Review of Technologies, Grid Integration Issues, Growth Drivers and Potential Benefits, International Journal of Renewable Energy Development, 9(2), 189-205; https://doi: 10.14710/ijred.9.2.189-205
  26. Lasabi, O., Swanson, A., Jarvis, L., Aluko, A., & Brown, M. (2022). Enhanced Distributed Non-Linear Voltage Regulation and Power Apportion Technique for an Islanded DC Microgrid. Applied Sciences, 13(15), 8659. https://doi.org/10.3390/app13158659
  27. Lautenbacher, R., Al Beattie, B., Ochs, K. et al. (2024) .Sufficient synchronization conditions for resistively and memristively coupled oscillators of FitzHugh- Nagumo-type. Discov Appl Sci 6,198 https://doi.org/10.1007/s42452-024-05791-8
  28. Lazarus, L., Davidow, M. & Randa, R.(2016). Dynamics of a Delay Limit Cycle Oscillator with Self-Feedback, Procedia IUTAM, 19, 152 – 160; https://doi.org/10.1016/j.piutam.2016.03.020
  29. Leea, J. , Kimb, E. & Moona, S.(2016). Determining P-Q Droop Coefficients of Renewable Generators for Voltage Regulation in an Islanded Microgrid, Proc of 3rd International Conference on Energy and Environment Research, 122-129; https://doi.org/10.1016/j.egypro.2016.12.146
  30. Lin, Y. , Eto, J. H. , Johnson, B. B. , Flicker, J. D. , Lasseter, R. H. , Villegas Pico, H. N. , Seo, G.S., Pierre, B. J. & Ellis, A.,(2020) Research roadmap on grid-forming inverters, Golden, CO: National Renewable Energy Laboratory. NREL/TP-5D00-73476
  31. Liu, Z., Miao, S., Fan, Z., Liu, J., & Tu, Q. (2018). Improved power flow control strategy of the hybrid AC/DC microgrid based on VSM, IET Generation, Transmission & Distribution, 13(1), 81-91. https://doi.org/10.1049/iet-gtd.2018.5839
  32. Moghaddam, A.A., Abdi, H., Mohammadi-ivatloo, B. & Hatziargyriou, N., (2021). Microgrids: Advances in Operation, Control, and Protection, (1 ed.), Springer
  33. Mohammed,N., Ali,M., Ciobotaru,M. & Fletcher,J.(2023).Accurate control of virtual oscillator-controlled islanded AC microgrids, Electric Power Systems Research, 214, Part A,108791; https://doi.org/10.1016/j.epsr.2022.108791
  34. Montenbruck, J. M., Bürger, M., & Allgöwer, F. (2015). Practical synchronization with diffusive couplings. Automatica, 53, 235-243. https://doi.org/10.1016/j.automatica.2014.12.024
  35. Muhtadi,A., Pandit, D., Nguyen, N. & Mitra, J. ( 2021). Distributed Energy Resources Based Microgrid: Review of Architecture, Control, and Reliability, IEEE Transactions on Industry Applications, 57(3), 2223-2235; https://doi: 10.1109/TIA.2021.3065329
  36. Naderipour, A., Abdul-Malek, Z., Davoodkhani, I.F., Malek, Z.A, & Kamyab, H., (2023). Load-frequency control in an islanded microgrid PV/WT/FC/ESS using an optimal self-tuning fractional-order fuzzy controller, Environmental Science and Pollution Research, 30, 71677–71688; https://doi.org/10.1007/s11356-021-14799-1
  37. Nair, R. P. & Kanakasabapathy, P. (2023). PR controller-based droop control strategy for AC microgrid using Ant Lion Optimization technique, EnergyReports, 9, 6189-6198; https://doi.org/10.1016/j.egyr.2023.05.220
  38. Opila DF, Kintzley K, Shabshab S, Phillips S. (2019). Virtual Oscillator Control of Equivalent Voltage-Sourced and Current-Controlled Power Converters. Energies, 12(2):298; https://doi.org/10.3390/en12020298
  39. Pannila E.A.L& Edirisinghe M.(2020). Characterization of Switching Transients in Low Voltage Power Systems of Tea Factories in Sri Lanka. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 325-334; https://doi.org/10.18280/ejee.224-504
  40. Pavan Kumar, Y.V.& Bhimasingu, R. (2021). Design of voltage and current controller parameters using small signal model-based pole-zero cancellation method for improved transient response in microgrids. SN Appl. Sci. 3, 836 ; https:// doi.org/10.1007/s42452-021-04815-x
  41. Peng, M., Zhang,Z., Qu,Z. & Bi,Q.(2020). Qualitative analysis in a delayed Van der Pol oscillator, Physica A: Statistical Mechanics and its Applications,544,123482; https://doi.org/10.1016/j.physa.2019.123482
  42. Pyragas, V. & Pyragas, K. (2018). Act-and-wait time-delayed feedback control of autonomous systems, Physics Letters A, 382(8), 574-580; https://doi.org/10.1016/j.physleta.2017.12.019
  43. Pyragus, K. (2006). Delayed feedback control of chaos, Philosophical Transactions of the Royal Society A, 364 ( 1846), 2309–2334; https://doi.org/10.1098/rsta.2006.1827
  44. Qachchachi, N., Mahmoudi, H., & El Hassnaoui, A. (2020). Control Strategy of Hybrid AC/DC Microgrid in Standalone Mode. International Journal of Renewable Energy Development, 9(2), 295-301; https://doi.org/10.14710/ijred.9.2.295-301
  45. Qazi, S.H., Mustafa, M.W., Sultana, U., Mirjat, N.H., Soomro, S.A.& Rasheed, N.(2018). Regulation of Voltage and Frequency in Solid Oxide Fuel Cell-Based Autonomous Microgrids Using the Whales OptimisationAlgorithm,Energies,11,1318; https://doi.org/10.3390/en11051318
  46. Raisz, D., Thai, T. T. & Monti, A. (2019). Power Control of Virtual Oscillator Controlled Inverters in Grid-connected Mode”, IEEE Transactions on Power Electronics, 34(6), 5916 – 5926; https://doi.org/10.1109/TPEL.2018.2868996
  47. Rashwan., A, Mikhaylov., A, Senjyu., T., Eslami, M., Hemeida, A.M, Osheba, D.S.M.(2023). Modified Droop Control for Microgrid Power-Sharing Stability Improvement. Sustainability, 15(14): 11220. https://doi.org/10.3390/su151411220
  48. Razmi, D. & Lu, T. A, (2022). Literature Review of the Control Challenges of Distributed Energy Resources Based on Microgrids (MGs): Past, Present and Future .Energies; 15(13): 4676; https://doi.org/10.3390/en15134676
  49. Rebollal D, Carpintero-Rentería M, Santos-Martín D & Chinchilla M. (2021). Microgrid and Distributed Energy Resources Standards and Guidelines Review: Grid Connection and Operation Technical Requirements. Energies, 14(3); https://doi.org/10.3390/en14030523
  50. Reddy, C. R. & Reddy, K. H. (2019). Islanding Detection Techniques for Grid Integrated Distributed Generation –A Review, International Journal of Renewable Energy Research, 9(2), 960-977; https://doi.org/10.20508/ijrer.v9i2.9371.g7661
  51. Rizvi, S. & Abu-Siada, A.(2023). A Review on Active-Power-Sharing Techniques for Microgrids, Energies 6(13):5175. https://doi.org/10.3390/en16135175
  52. Rodrigues N.M., Janeiro F.M., Ramos P.M.(2023). Power Quality Transient Detection and Characterization Using Deep Learning Techniques. Energies. 16(4):1915; https://doi.org/10.3390/en16041915
  53. Roselyn, J. P. , Ravi, A., Devaraj, D., Venkatesan, R., Sadees, M. & Vijayakumar, K. (2020). Intelligent coordinated control for improved voltage and frequency regulation with smooth switchover operation in LV microgrid, Sustainable Energy, Grids and Networks, 22 ; https://doi.org/10.1016/j.segan.2020.100356
  54. Sepasi, S., Talichet, C. and Pramanik, A.S.(2023). Power Quality in Microgrids: A Critical Review of Fundamentals, Standards, and Case Studies, IEEEAccess, Vol.11,pp. 108493 – 108531; doi: 10.1109/ACCESS.2023.3321301
  55. Shahgholian, G., (2021). A brief review on microgrids: Operation, applications, modeling and control, International Transactions on Electrical Energy Systems, 31(6), 31; e12885; https://doi.org/10.1002/2050-7038.12885
  56. Shayeghi, H. & Alilou (2021) Hybrid Renewable Energy Systems and Microgrids. Academic Press
  57. Shi, Y., Gu, X., Yin, X., Feng, S., & Zhang, S. (2022). Design of droop controller in islanded microgrids using multi-objective optimisation based on accurate small-signal model. IET Power Electronics, 15(11), 1093-1109; https://doi.org/10.1049/pel2.12293
  58. Shi, Z., Li, J., Nurdin, H. I., & Fletcher, J. E. (2020). Transient response comparison of virtual oscillator controlled and droop controlled three-phase inverters under load changes, IET Generation, Transmission & Distribution, 14(6), 1138-1147; https://doi.org/10.1049/iet-gtd.2018.5612
  59. Sinha, M., Dörfler, F., Johnson, B. B. & Dhople, S. V. (2015). Virtual Oscillator Control Subsumes Droop Control, Proc. of the American Control Conference, Chicago, IL, USA; https://doi.org/10.1109/ACC.2015.7171084
  60. UjiKrismanto, A., Mithulananthan, N. & Krause,O.(2018). Stability of Renewable Energy based Microgrid in Autonomous Operation, Sustainable Energy Grids and Networks, 13, 134-147; https://doi.org/10.1016/j.segan.2017.12.009
  61. Unamuno, E., Barrena, J.A. (2017). Equivalence of Primary Control Strategies for AC and DC Microgrids. Energies, 10(1):91. https://doi.org/10.3390/en10010091
  62. Valedsaravi, S., Aroudi, A.E., Barrado-Rodrigo, Barrado Rodrigo, J.A. Hamzeh, M. & Salamero, L.M.(2023). Multi-resonant Controller Design for a PV-Fed Multifunctional Grid-Connected Inverter in Presence of Unbalanced and Nonlinear Load. J Control Autom Electr Syst 34, 766–781; https://doi.org/10.1007/s40313-023-01007-3
  63. Wang, Y., Tang, J., Si, J., Xiao, X., Zhou, P., & Zhao, J. (2023). Power quality enhancement in islanded microgrids via closed-loop adaptive virtual impedance control, Protection and Control of Modern Power Systems, 8(1), 1-17; https://doi.org/10.1186/s41601-023-00284-z
  64. Watanabe, M., & Sakai, K. (2023). Delayed feedback control for chaotic vibration in nonlinear impact dynamics of bouncing agricultural tractor. Scientific Reports, 13(1), 1-13; https://doi.org/10.1038/s41598-023-37916-1
  65. Xu, C., Liao, M., Li, P., Yao, L., Qin, Q., Shang, Y.(2021). Chaos Control for a Fractional-Order Jerk System via Time Delay Feedback Controller and Mixed Controller. Fractal and Fractional; 5(4):257; https://doi.org/10.3390/fractalfract5040257

Last update:

No citation recorded.

Last update: 2025-01-18 01:25:41

No citation recorded.