skip to main content

Biomass and organic waste conversion for sustainable bioenergy: A comprehensive bibliometric analysis of current research trends and future directions

1Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia

2Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Malaysia

Received: 22 Feb 2024; Revised: 13 Apr 2024; Accepted: 15 May 2024; Available online: 22 Jun 2024; Published: 1 Jul 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The rising demand for renewable energy sources has fueled interest in converting biomass and organic waste into sustainable bioenergy. This study employs a bibliometric analysis (2013-2023) of publications to assess trends, advancements, and future prospects in this field. The analysis explores seven key research indicators, including publication trends, leading contributors, keyword analysis, and highly cited papers.  We begin with a comprehensive overview of biomass as a renewable energy source and various waste-to-energy technologies.  Employing Scopus and Web of Science databases alongside Biblioshiny and VOSviewer for analysis, the study investigates publication patterns, citation networks, and keyword usage. This systematic approach unveils significant trends in research focus and identifies prominent research actors (countries and institutions). Our findings reveal a significant increase in yearly publications, reflecting the growing global focus on biomass and organic waste conversion. Leading contributors include China, the United States, India, and Germany.  Analysis of keywords identifies commonly used terms like "biofuels," "pyrolysis," and "lignocellulosic biomass." The study concludes by proposing future research directions, emphasizing advanced conversion technologies, integration of renewable energy sources, and innovative modelling techniques.

Fulltext View|Download
Keywords: Bibliometric analysis; Biomass; Bioenergy; Renewable energy; Organic waste conversion
Funding: PETRONAS – Malaysia via grant YUTP – FRG, Cost Center No: 015LC0-404.

Article Metrics:

  1. Abbas, T., Issa, M., & Ilinca, A. (2020). Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10(01), 1–15. https://doi.org/10.4236/jsbs.2020.101001
  2. Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003
  3. Aboudi, K., Álvarez-Gallego, C. J., Romero-García, L. I., & Fernández-Güelfo, L. A. (2021). Biogas, biohydrogen, and polyhydroxyalkanoates production from organic waste in the circular economy context. Sustainable Biofuels: Opportunities and Challenges, 305–343. https://doi.org/10.1016/B978-0-12-820297-5.00002-5
  4. Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S., Ahmed, S. M. S., Al-Gehlani, W. A. G., & Alrawaf, T. I. (2022). Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. In International Journal of Environmental Research and Public Health 19(19). https://doi.org/10.3390/ijerph191912717
  5. Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass Conversion Technologies. In Greenhouse Gas Balances of Bioenergy Systems (pp. 107–139). https://doi.org/10.1016/B978-0-08-101036-5.00008-2
  6. ADB. (2020). Waste to Energy in the Age of the Circular Economy: https://doi.org/10.22617/TIM200330-2
  7. Adegboye, M. F., Ojuederie, O. B., Talia, P. M., & Babalola, O. O. (2021). Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnology for Biofuels, 14(1), 5. https://doi.org/10.1186/s13068-020-01853-2
  8. Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 06(03), 205–212. https://doi.org/10.4236/abb.2015.63020
  9. Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015
  10. Ahmad, Q. ul A., & Qazi, J. I. (2014). Thermophilic fermentations of lignocellulosic substrates and economics of biofuels: Prospects in Pakistan. In International Journal of Energy and Environmental Engineering, 5(2–3), 1–14. https://doi.org/10.1007/s40095-014-0094-4
  11. Aidonojie, P. A., Ukhurebor, K. E., Oaihimire, I. E., Ngonso, B. F., Egielewa, P. E., Akinsehinde, B. O., Kusuma, H. S., & Darmokoesoemo, H. (2023). Bioenergy revamping and complimenting the global environmental legal framework on the reduction of waste materials: A facile review. Heliyon, 9(1), e12860. https://doi.org/10.1016/j.heliyon.2023.e12860
  12. Akubude, V. C., Nwaigwe, K. N., & Dintwa, E. (2019). Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Materials Science for Energy Technologies, 2(2), 216–225. https://doi.org/10.1016/j.mset.2018.12.006
  13. Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2022). Waste‐to‐energy nexus: An overview of technologies and implementation for sustainable development. Cleaner Energy Systems, 3, 100034. https://doi.org/10.1016/j.cles.2022.100034
  14. Al-asadi, M., Miskolczi, N., & Eller, Z. (2020). Pyrolysis-gasification of wastes plastics for syngas production using metal modified zeolite catalysts under different ratio of nitrogen/oxygen. Journal of Cleaner Production, 271, 122186. https://doi.org/10.1016/j.jclepro.2020.122186
  15. Alex Ryzhkov. (2023). The Complete Guide to Biomass Power Plant Business Financing and Raising Capital. https://finmodelslab.com/blogs/rising-capital/biomass-power-plant-rising-capital
  16. Al-Haj Ibrahim, H. (2020). Introductory Chapter: Pyrolysis. In Recent Advances in Pyrolysis. IntechOpen. https://doi.org/10.5772/intechopen.90366
  17. Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., & Ahmad Asad, S. (2014). Microbial ecology of anaerobic digesters: The key players of anaerobiosis. In The Scientific World Journal (Vol. 2014). Hindawi Limited. https://doi.org/10.1155/2014/183752
  18. Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., & Morones-Ramírez, J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18(1), 178. https://doi.org/10.1186/s12934-019-1228-4
  19. AlMallahi, M. N., Asaad, S. M., Inayat, A., Harby, K., & Elgendi, M. (2023). Analysis of solar-powered adsorption desalination systems: Current research trends, developments, and future perspectives. International Journal of Thermofluids, 20. https://doi.org/10.1016/j.ijft.2023.100457
  20. Alnouss, A., Mckay, G., & Al-Ansari, T. (2019). Superstructure Optimization for the Production of Fuels, Fertilizers and Power using Biomass Gasification (pp. 301–306). https://doi.org/10.1016/B978-0-12-818634-3.50051-5
  21. Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715. https://doi.org/10.1016/j.rser.2022.112715
  22. Amalina, F., Razak, A. S. A., Krishnan, S., Sulaiman, H., Zularisam, A. W., & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. Journal of Hazardous Materials Advances, 7, 100134. https://doi.org/10.1016/j.hazadv.2022.100134
  23. Amornraksa, S., Subsaipin, I., Simasatitkul, L., & Assabumrungrat, S. (2020). Systematic design of separation process for bioethanol production from corn stover. BMC Chemical Engineering, 2(1), 10. https://doi.org/10.1186/s42480-020-00033-1
  24. Amulen, J., Kasedde, H., Serugunda, J., & Lwanyaga, J. D. (2022). The potential of energy recovery from municipal solid waste in Kampala City, Uganda by incineration. Energy Conversion and Management: X, 14, 100204. https://doi.org/10.1016/j.ecmx.2022.100204
  25. Andersen, R. A., & Lewin, R. A. (2023). “algae.” Encyclopedia Britannica. https://www.britannica.com/science/algae/Physical-and-ecological-features-of-algae
  26. Antunes, F. A. F., Chandel, A. K., Terán-Hilares, R., Ingle, A. P., Rai, M., dos Santos Milessi, T. S., da Silva, S. S., & dos Santos, J. C. (2019). Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech , 9(6). https://doi.org/10.1007/s13205-019-1761-1
  27. Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. In Processes, 7(8), 1–19. https://doi.org/10.3390/PR7080504
  28. Anvari, S., Aguado, R., Jurado, F., Fendri, M., Zaier, H., Larbi, A., & Vera, D. (2024). Analysis of agricultural waste/byproduct biomass potential for bioenergy: The case of Tunisia. Energy for Sustainable Development, 78, 101367. https://doi.org/10.1016/j.esd.2023.101367
  29. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
  30. Bähner, F. D., Prado-Rubio, O. A., & Huusom, J. K. (2021). Challenges in Optimization and Control of Biobased Process Systems: An Industrial-Academic Perspective. In Industrial and Engineering Chemistry Research, 60(42), 14985–15003.. https://doi.org/10.1021/acs.iecr.1c01792
  31. Bandyopadhyay-Ghosh, S., Ghosh, S. B., & Sain, M. (2015). 19 - The use of biobased nanofibres in composites. In O. Faruk & M. Sain (Eds.), Biofiber Reinforcements in Composite Materials (pp. 571–647). Woodhead Publishing. https://doi.org/10.1533/9781782421276.5.571
  32. Bardhan, P., Deka, A., Bhattacharya, S. S., Mandal, M., & Kataki, R. (2022). Chapter 18 - Economical aspect in biomass to biofuel production. In S. Yusup & N. A. Rashidi (Eds.), Value-Chain of Biofuels, 395–427. https://doi.org/10.1016/B978-0-12-824388-6.00003-8
  33. Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. In Frontiers in Energy Research, 6. https://doi.org/10.3389/fenrg.2018.00141
  34. Batista, A. P., Gouveia, L., & Marques, P. A. S. S. (2018). Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter aerogenes – Effect of operational conditions and fermentation kinetics. Renewable Energy, 119, 203–209. https://doi.org/10.1016/j.renene.2017.12.017
  35. Battista, F., Frison, N., Pavan, P., Cavinato, C., Gottardo, M., Fatone, F., Eusebi, A., Majone, M., Zeppilli, M., Valentino, F., Fino, D., Tommasi, T., & Bolzonella, D. (2019). Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added value bio‐products. Journal of Chemical Technology & Biotechnology, 95. https://doi.org/10.1002/jctb.6096
  36. Beluhan, S., Mihajlovski, K., Šantek, B., & Ivančić Šantek, M. (2023). The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing. Energies, 16(19).. https://doi.org/10.3390/en16197003
  37. Ben-Iwo, J., Manovic, V., & Longhurst, P. (2016). Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renewable and Sustainable Energy Reviews, 63, 172–192. https://doi.org/https://doi.org/10.1016/j.rser.2016.05.050
  38. Bennett, P and Buckley, P. (2022). IEA-Bioenergy-Annual-Report-2021. https://www.ieabioenergy.com/wp-content/uploads/2022/04/IEA-Bioenergy-Annual-Report-2021.pdf
  39. Bera, T., Inglett, K., & Wilkie, A. (2020). Biofuel: Concepts and Considerations. EDIS, 2020. https://doi.org/10.32473/edis-ss688-2020
  40. Bharadwaj, G., Chopde, S., Taluja, R., Lalitha, G., Chandrashekar, R., & Dhahi, H. A. (2023). Closing the Loop: Advances in Materials, Energy, and Waste Management. E3S Web of Conferences, 453, 01024. https://doi.org/10.1051/e3sconf/202345301024
  41. Bian, R., Ma, B., Zhu, X., Wang, W., Li, L., Joseph, S., Liu, X., & Cheng, K. (2016). Pyrolysis of crop residues in a mobile bench-scale pyrolyser: Product Characterization and Environmental Performance. Journal of Analytical and Applied Pyrolysis, 119. https://doi.org/10.1016/j.jaap.2016.03.018
  42. Bibra, M., Samanta, D., Sharma, N. K., Singh, G., Johnson, G. R., & Sani, R. K. (2023). Food Waste to Bioethanol: Opportunities and Challenges. In Fermentationm 9(1). https://doi.org/10.3390/fermentation9010008
  43. Bisinella, V., Hulgaard, T., Riber, C., Damgaard, A., & Christensen, T. H. (2021). Environmental assessment of carbon capture and storage (CCS) as a post-treatment technology in waste incineration. Waste Management, 128, 99–113. https://doi.org/10.1016/j.wasman.2021.04.046
  44. Blair, M. J., Gagnon, B., Klain, A., & Kulišić, B. (2021). Contribution of biomass supply chains for bioenergy to sustainable development goals. Land, 10(2), 1–28. https://doi.org/10.3390/land10020181
  45. Blasi, A., Verardi, A., Lopresto, C. G., Siciliano, S., & Sangiorgio, P. (2023). Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview. Recycling, 8(4). https://doi.org/10.3390/recycling8040061
  46. Bolan, N., Hoang, A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K.-H., Kirkham, M., Kua, H., Kumar, M., Kwon, E., Ok, Y. S., Perera, V., Rinklebe, J., Shaheen, S., Sarkar, B., Sarmah, A., & Van Zwieten, L. (2021). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67, 150–200. https://doi.org/10.1080/09506608.2021.1922047
  47. Bolívar Caballero, J. J., Zaini, I. N., & Yang, W. (2022). Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels. Applications in Energy and Combustion Science, 10, 100064. https://doi.org/10.1016/j.jaecs.2022.100064
  48. Bošnjaković, M., & Sinaga, N. (2020). The perspective of large-scale production of algae biodiesel. Applied Sciences, 10(22), 1–26. https://doi.org/10.3390/app10228181
  49. Britannica. (2023, November 7). fermentation . Encyclopedia Britannica. https://www.britannica.com/science/fermentation
  50. Broda, M., Yelle, D. J., & Serwańska, K. (2022). Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions. In Molecules, 27 (24). https://doi.org/10.3390/molecules27248717
  51. Brunner, P. H., & Rechberger, H. (2015). Waste to energy – key element for sustainable waste management. Waste Management, 37, 3–12. https://doi.org/10.1016/j.wasman.2014.02.003
  52. Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): The way forward. Energy and Environmental Science, 11(5), 1062–1176. https://doi.org/10.1039/c7ee02342a
  53. Bušić, A., Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M. I., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology ,56(3), 289–311. https://doi.org/10.17113/ftb.56.03.18.5546
  54. Cai, J., He, Y., Yu, X., Banks, S. W., Yang, Y., Zhang, X., Yu, Y., Liu, R., & Bridgwater, A. V. (2017). Review of physicochemical properties and analytical characterization of lignocellulosic biomass. In Renewable and Sustainable Energy Reviews, 76, 309–322. https://doi.org/10.1016/j.rser.2017.03.072
  55. Canabarro, N., Soares, J. F., Anchieta, C. G., Kelling, C. S., & Mazutti, M. A. (2013). Thermochemical processes for biofuels production from biomass. Sustainable Chemical Processes, 1(1), 22. https://doi.org/10.1186/2043-7129-1-22
  56. Catherine Lane. (2023, November 9). Biomass energy pros and cons. Solar Reviews. https://www.solarreviews.com/blog/biomass-energy-pros-and-cons
  57. Celebi, A. D., Sharma, S., Ensinas, A. V., & Maréchal, F. (2019). Next generation cogeneration system for industry – Combined heat and fuel plant using biomass resources. Chemical Engineering Science, 204, 59–75. https://doi.org/10.1016/j.ces.2019.04.018
  58. Ceron-Chafla, P., Kleerebezem, R., Rabaey, K., Van Lier, J. B., & Lindeboom, R. E. F. (2020). Direct and Indirect Effects of Increased CO2Partial Pressure on the Bioenergetics of Syntrophic Propionate and Butyrate Conversion. Environmental Science and Technology, 54(19), 12583–12592. https://doi.org/10.1021/acs.est.0c02022
  59. Chen, H., & Wang, L. (2017). Chapter 1. Introduction. https://doi.org/10.1016/B978-0-12-802417-1.00001-6
  60. Chen, W.-H., Lin, B.-J., Lin, Y.-Y., Chu, Y.-S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J.-S., Ho, S.-H., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887
  61. Chhandama, M. V. L., Ruatpuia, J. V. L., Ao, S., Chetia, A. C., Satyan, K. B., & Rokhum, S. L. (2023). Microalgae as a sustainable feedstock for biodiesel and other production industries: Prospects and challenges. Energy Nexus, 12, 100255. https://doi.org/10.1016/j.nexus.2023.100255
  62. Chin, K. L., & Hng, P. S. (2013). A Real Story of Bioethanol from Biomass: Malaysia Perspective. In Biomass Now - Sustainable Growth and Use. InTech. https://doi.org/10.5772/51198
  63. Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., Chin, J. K., & Pan, G. T. (2020). Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes, 8(1). https://doi.org/10.3390/pr8010039
  64. Chung, J. N. (2013). Grand challenges in bioenergy and biofuel research: Engineering and technology development, environmental impact, and sustainability. Frontiers in Energy Research, 1(SEP). https://doi.org/10.3389/fenrg.2013.00004
  65. Clauser, N. M., González, G., Mendieta, C. M., Kruyeniski, J., Area, M. C., & Vallejos, M. E. (2021). Biomass waste as sustainable raw material for energy and fuels. Sustainability (Switzerland), 13(2), 1–21. https://doi.org/10.3390/su13020794
  66. Czekała, W., Nowak, M., & Bojarski, W. (2023). Characteristics of Substrates Used for Biogas Production in Terms of Water Content. In Fermentation, 9(5). https://doi.org/10.3390/fermentation9050449
  67. Daneshvar, E., Sik Ok, Y., Tavakoli, S., Sarkar, B., Shaheen, S. M., Hong, H., Luo, Y., Rinklebe, J., Song, H., & Bhatnagar, A. (2021). Insights into upstream processing of microalgae: A review. Bioresource Technology, 329, 124870. https://doi.org/10.1016/j.biortech.2021.124870
  68. Das, A., Das, S., Das, N., Pandey, P., Ingti, B., Panchenko, V., Bolshev, V., Kovalev, A., & Pandey, P. (2023). Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials. Agriculture (Switzerland), 13, (9). https://doi.org/10.3390/agriculture13091689
  69. Dawod, A. (2021). Pyrolysis of biomass. https://hdl.handle.net/11250/2774693
  70. Department of Energy. (2015). Biomass Basics: The Facts About Bioenergy. https://www.energy.gov/sites/prod/files/2015/07/f24/biomass_basics.pdf
  71. Deshmukh, R., Jacobson, A., Chamberlin, C., & Kammen, D. (2013). Thermal gasification or direct combustion? Comparison of advanced cogeneration systems in the sugarcane industry. Biomass and Bioenergy, 55, 163–174. https://doi.org/10.1016/j.biombioe.2013.01.033
  72. Destek, M. A., & Sinha, A. (2020). Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. Journal of Cleaner Production, 242. https://doi.org/10.1016/j.jclepro.2019.118537
  73. Devi, M., & Rawat, S. (2021). A comprehensive review of the pyrolysis process: From carbon nanomaterial synthesis to waste treatment. In Oxford Open Materials Science, 1(1). https://doi.org/10.1093/oxfmat/itab014
  74. Dhawane, S. H., Al-Sakkari, E. G., & Yadav, D. (2022). Chapter 15 - Cost-effective viable solutions for existing technologies. In D. Yadav, P. Kumar, P. Singh, & D. A. Vallero (Eds.), Hazardous Waste Management (pp. 381–395). Elsevier. https://doi.org/10.1016/B978-0-12-824344-2.00033-1
  75. Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716. https://doi.org/10.1016/j.renene.2017.04.035
  76. Dimitriadis, A., & Bezergianni, S. (2017). Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renewable and Sustainable Energy Reviews, 68,113–125. https://doi.org/10.1016/j.rser.2016.09.120
  77. Ding, Y., Xi, Y., Gao, H., Wang, J., Wei, W., & Zhang, R. (2022). Porosity of municipal solid waste incinerator bottom ash effects on asphalt mixture performance. Journal of Cleaner Production, 369, 133344. https://doi.org/10.1016/j.jclepro.2022.133344
  78. Dong, L., Qi, W., Sun, Y., Kong, X., & Zhang, Y. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy - INT J HYDROGEN ENERG, 34, 812–820. https://doi.org/10.1016/j.ijhydene.2008.11.031
  79. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133. https://doi.org/10.1016/j.jbusres.2021.04.070
  80. Du, Y., Zou, W., Zhang, K., Ye, G., & Yang, J. (2020). Advances and Applications of Clostridium Co-culture Systems in Biotechnology. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.560223
  81. Ebrahimzadeh, G., Alimohammadi, M., Kahkah, M. R. R., & Mahvi, A. H. (2021). Relationship between algae diversity and water quality- a case study: Chah Niemeh reservoir Southeast of Iran. Journal of Environmental Health Science and Engineering, 19(1), 437–443. https://doi.org/10.1007/s40201-021-00616-x
  82. EEA. (2020). Bio-waste in Europe-turning challenges into opportunities. European Environment Agency. https://doi.org/10.2800/630938
  83. EIA. (2022). Biomass explained: Biomass and the environment. U.S. Energy Information Administration. https://www.eia.gov/energyexplained/biomass/biomass-and-the-environment.php
  84. Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology,178, 147–156).. https://doi.org/10.1016/j.biortech.2014.09.132
  85. Erdiwansyah, Gani, A., Zaki, M., Mamat, R., Nizar, M., Rosdi, S. M., Yana, S., & Sarjono, R. E. (2023). Analysis of technological developments and potential of biomass gasification as a viable industrial process: A review. Case Studies in Chemical and Environmental Engineering, 8, 100439. https://doi.org/10.1016/j.cscee.2023.100439
  86. EUBA. (2023a). Environmental benefits of biomass. European Biomass Industry Association. https://www.eubia.org/cms/wiki-biomass/employment-potential-in-figures/environmental-benefits/
  87. EUBA. (2023b). R&D orientations to bioenergy. European Biomass Industry Association. https://www.eubia.org/cms/wiki-biomass/r-d-orientations/
  88. Fakruhayat, M., & Rashid, A. (2023). How to Conduct a Bibliometric Analysis using R Packages: A Comprehensive Guidelines. In Journal of Tourism, Hospitality & Culinary Arts ,15(1)
  89. Farghali, M., Osman, A. I., Umetsu, K., & Rooney, D. W. (2022). Integration of biogas systems into a carbon zero and hydrogen economy: a review. Environmental Chemistry Letters , 20(5), 2853–2927). https://doi.org/10.1007/s10311-022-01468-z
  90. Fasaei, F., Bitter, J. H., Slegers, P. M., & van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347–362. https://doi.org/10.1016/j.algal.2017.11.038
  91. Ferdoush, Md. R., Aziz, R. Al, Karmaker, C. L., Debnath, B., Limon, M. H., & Bari, A. B. M. M. (2024). Unraveling the challenges of waste-to-energy transition in emerging economies: Implications for sustainability. Innovation and Green Development, 3(2), 100121. https://doi.org/10.1016/j.igd.2023.100121
  92. Fiala, M., & Nonini, L. (2018). Biomass and biofuels. EPJ Web of Conferences, 189, 00006. https://doi.org/10.1051/epjconf/201818900006
  93. Fiore, M., Magi, V., & Viggiano, A. (2020). Internal combustion engines powered by syngas: A review. Applied Energy, 276, 115415. https://doi.org/10.1016/j.apenergy.2020.115415
  94. Fuentes-Cortés, L. F., Zavala, V. M., González-Campos, J. B., & Ponce-Ortega, J. M. (2017). Optimal Coupling of Demand Patterns for Improving the Performance of CHP Systems. In A. Espuña, M. Graells, & L. Puigjaner (Eds.), Computer Aided Chemical Engineering, 40, 1909–1914. Elsevier. https://doi.org/10.1016/B978-0-444-63965-3.50320-2
  95. Gabrielli, P., Rosa, L., Gazzani, M., Meys, R., Bardow, A., Mazzotti, M., & Sansavini, G. (2023). Net-zero emissions chemical industry in a world of limited resources. One Earth, 6(6), 682–704. https://doi.org/10.1016/j.oneear.2023.05.006
  96. Gao, Y., Wang, M., Raheem, A., Wang, F., Wei, J., Xu, D., Song, X., Bao, W., Huang, A., Zhang, S., & Zhang, H. (2023). Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters. ACS Omega, 8(35), 31620–31631. https://doi.org/10.1021/acsomega.3c03050
  97. Garba, A. (2020). Biomass Conversion Technologies for Bioenergy Generation: An Introduction. www.intechopen.com
  98. Garver, M. P., & Liu, S. (2014). Chapter 27 - Development of Thermochemical and Biochemical Technologies for Biorefineries. In V. K. Gupta, M. G. Tuohy, C. P. Kubicek, J. Saddler, & F. Xu (Eds.), Bioenergy Research: Advances and Applications (pp. 457–488). Elsevier. https://doi.org/10.1016/B978-0-444-59561-4.00027-9
  99. GGI Insights. (2023). Bioenergy: Sustainable Solutions for Renewable Energy. Gray Group International. https://www.graygroupintl.com/blog/bioenergy#:~:text=The%20integration%20of%20bioenergy%20in,energy%20system%20can%20be%20achieved
  100. Gnanasekaran, L., Priya, A. K., Thanigaivel, S., Hoang, T. K. A., & Soto-Moscoso, M. (2023). The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel, 331, 125668. https://doi.org/10.1016/j.fuel.2022.125668
  101. Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass. In Renewable and Sustainable Energy Reviews, 81, 1378–1392. https://doi.org/10.1016/j.rser.2017.05.178
  102. Greenvolt. (2023). Energy from Biomass: Why Does Transforming Matter? Biomass Energy. https://greenvolt.com/biomass-energy/
  103. Grierson, S., Strezov, V., & Shah, P. (2011). Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresource Technology, 102, 8232–8240. https://doi.org/10.1016/j.biortech.2011.06.010
  104. Gumisiriza, R., Hawumba, J. F., Okure, M., & Hensel, O. (2017). Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnology for Biofuels, 10(1). https://doi.org/10.1186/s13068-016-0689-5
  105. Gupta, S., Mondal, P., Borugadda, V. B., & Dalai, A. K. (2021). Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review. Environmental Technology & Innovation, 21, 101276. https://doi.org/10.1016/j.eti.2020.101276
  106. Haque, N., & Azad, A. K. (2023). Comparative Study of Hydrogen Production from Organic Fraction of Municipal Solid Waste and Its Challenges: A Review. Energies, 16(23). https://doi.org/10.3390/en16237853
  107. Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., Awasthi, M. K., & Taherzadeh, M. J. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered,13(3), 6521–6557). https://doi.org/10.1080/21655979.2022.2035986
  108. Hasan, M., Abedin, M. Z., Amin, M. Bin, Nekmahmud, Md., & Oláh, J. (2023). Sustainable biofuel economy: A mapping through bibliometric research. Journal of Environmental Management, 336, 117644. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.117644
  109. Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability (Switzerland), 14(8). https://doi.org/10.3390/su14084792
  110. How, B. S., Ngan, S. L., Hong, B. H., Lam, H. L., Ng, W. P. Q., Yusup, S., Ghani, W. A. W. A. K., Kansha, Y., Chan, Y. H., Cheah, K. W., Shahbaz, M., Singh, H. K. G., Yusuf, N. R., Shuhaili, A. F. A., & Rambli, J. (2019). An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges. Renewable and Sustainable Energy Reviews, 113, 109277. https://doi.org/10.1016/j.rser.2019.109277
  111. IEA. (2020). Outlook for biogas and Prospects for organic growth World Energy Outlook Special Report biomethane. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane
  112. IEA, & OECD. (2011). Key points FACT SHEET Low Carbon Green Growth Roadmap for Asia and the Pacific. https://www.iea.org/G8/CHP/docs/IEA_India.pdf
  113. Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S., SangmeshB, & Karuppasamy, K. S. K. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7, 100118. https://doi.org/10.1016/j.nexus.2022.100118
  114. Jarvie, M. E. (2023). “anaerobic digestion.” Encyclopedia Britannica. https://www.britannica.com/science/anaerobic-digestion
  115. Junginger, M. (2013). Key messages bioenergy- A Sustainable and reliable energy source:A review of status and prospects
  116. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022a). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022, 1–43. https://doi.org/10.1155/2022/8750221
  117. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022b). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research (Vol. 9). https://doi.org/10.3389/fenrg.2021.743114
  118. Kabeyi, M. J. B., & Olanrewaju, O. A. (2023). Smart grid technologies and application in the sustainable energy transition: a review. International Journal of Sustainable Energy, 42(1), 685–758. https://doi.org/10.1080/14786451.2023.2222298
  119. Kalak, T. (2023). Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. In Energies 16, (4). https://doi.org/10.3390/en16041783
  120. Kataya, G., Cornu, D., Bechelany, M., Hijazi, A., & Issa, M. (2023). Biomass Waste Conversion Technologies and Its Application for Sustainable Environmental Development—A Review. Agronomy, 13(11), 2833. https://doi.org/10.3390/agronomy13112833
  121. Khan, K. A., Quamar, M. M., Al-Qahtani, F. H., Asif, M., Alqahtani, M., & Khalid, M. (2023). Smart grid infrastructure and renewable energy deployment: A conceptual review of Saudi Arabia. Energy Strategy Reviews, 50, 101247. https://doi.org/10.1016/j.esr.2023.101247
  122. Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 17(1). https://doi.org/10.1186/s12934-018-0879-x
  123. Khan, S., Das, P., Abdul Quadir, M., Thaher, M. I., Mahata, C., Sayadi, S., & Al-Jabri, H. (2023). Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation 9(3).. https://doi.org/10.3390/fermentation9030281
  124. Khurram Shahzad, Baozhou Lu, Daud Abdul, Adnan Safi, Muhammad Umar, & Numan Khan Afridi. (2023). Assessment of biomass energy barriers towards sustainable development: Application of Pythagorean fuzzy AHP. Geological Journal, 58(4), 1607–1622
  125. Kitessa, W. M., Fufa, F., & Abera, D. (2022). Biogas Production and Biofertilizer Estimation from Anaerobic Co-Digestion of Blends of Wastewater and Microalgae. International Journal of Chemical Engineering, 2022. https://doi.org/10.1155/2022/3560068
  126. Kitessa, W. M., Fufa Feyessa, F., & Abera, D. (2022). Biogas Production and Biofertilizer Estimation from Anaerobic Co-Digestion of Blends of Wastewater and Microalgae. International Journal of Chemical Engineering, 2022, 1–10. https://doi.org/10.1155/2022/3560068
  127. Klinghoffer, N. B., Themelis, N. J., & Castaldi, M. J. (2013). 1 - Waste to energy (WTE): an introduction. In N. B. Klinghoffer & M. J. Castaldi (Eds.), Waste to Energy Conversion Technology (pp. 3–14). Woodhead Publishing. https://doi.org/10.1533/9780857096364.1.3
  128. Kotarska, K., Dziemianowicz, W., & Swierczyńska, A. (2019). Study on the sequential combination of bioethanol and biogas production from corn straw. Molecules, 24(24). https://doi.org/10.3390/molecules24244558
  129. Kumar, A. K., & Sharma, S. (2017a). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7. https://doi.org/10.1186/s40643-017-0137-9
  130. Kumar, A. K., & Sharma, S. (2017b). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. In Bioresources and Bioprocessing 4(1).. https://doi.org/10.1186/s40643-017-0137-9
  131. Kurth, J. M., Huub, &, Op Den Camp, J. M., & Welte, C. U. (2020). Several ways one goal-methanogenesis from unconventional substrates. https://doi.org/10.1007/s00253-020-10724-7/Published
  132. Lam, M. K., Loy, A. C. M., Yusup, S., & Lee, K. T. (2019a). Chapter 9 - Biohydrogen Production From Algae. In A. Pandey, S. V. Mohan, J.-S. Chang, P. C. Hallenbeck, & C. Larroche (Eds.), Biohydrogen (Second Edition) (pp. 219–245). Elsevier. https://doi.org/10.1016/B978-0-444-64203-5.00009-5
  133. Lam, M. K., Loy, A. C. M., Yusup, S., & Lee, K. T. (2019b). Chapter 9 - Biohydrogen Production From Algae. In A. Pandey, S. V. Mohan, J.-S. Chang, P. C. Hallenbeck, & C. Larroche (Eds.), Biohydrogen (Second Edition) (pp. 219–245). Elsevier. https://doi.org/10.1016/B978-0-444-64203-5.00009-5
  134. Lee, S. Y., Sankaran, R., Chew, K. W., Tan, C. H., Krishnamoorthy, R., Chu, D.-T., & Show, P.-L. (2019). Waste to bioenergy: a review on the recent conversion technologies. BMC Energy, 1(1). https://doi.org/10.1186/s42500-019-0004-7
  135. Li, G., Xiao, W., Yang, T., & Lyu, T. (2023). Optimization and Process Effect for Microalgae Carbon Dioxide Fixation Technology Applications Based on Carbon Capture: A Comprehensive Review. In C-Journal of Carbon Research 9(1). https://doi.org/10.3390/c9010035
  136. Li, H., Sun, C., Zhang, Y., Li, T., & Wei, X. (2022). Performance investigation of the gasification for the kitchen waste powder in a direct current plasma reactor. Journal of the Energy Institute, 100, 170–176. https://doi.org/10.1016/j.joei.2021.11.006
  137. Li, X., Chen, Y., & Nielsen, J. (2019). Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 57, 56–65. https://doi.org/10.1016/j.copbio.2019.01.006
  138. Li, X., Shi, Y., Kong, W., Wei, J., Song, W., & Wang, S. (2022). Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—A review. Energy Reports, 8, 696–709. https://doi.org/10.1016/j.egyr.2021.12.015
  139. Lisbona, P., Pascual, S., & Pérez, V. (2023). Waste to energy: Trends and perspectives. Chemical Engineering Journal Advances, 14, 100494. https://doi.org/10.1016/j.ceja.2023.100494
  140. Liu, C.-G., Xiao, Y., Xia, X.-X., Zhao, X.-Q., Peng, L., Srinophakun, P., & Bai, F.-W. (2019). Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances, 37(3), 491–504. https://doi.org/10.1016/j.biotechadv.2019.03.002
  141. López Barreiro, D., Prins, W., Ronsse, F., & Brilman, W. (2013). Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass and Bioenergy, 53, 113–127. https://doi.org/10.1016/j.biombioe.2012.12.029
  142. Luo, Z., & Zhou, J. (2012). Thermal Conversion of Biomass. In W.-Y. Chen, J. Seiner, T. Suzuki, & M. Lackner (Eds.), Handbook of Climate Change Mitigation (pp. 1001–1042). Springer US. https://doi.org/10.1007/978-1-4419-7991-9_27
  143. Maicas, S. (2020). The role of yeasts in fermentation processes. In Microorganisms (Vol. 8, Issue 8, pp. 1–8). MDPI AG. https://doi.org/10.3390/microorganisms8081142
  144. Malode, S. J., Prabhu, K. K., Mascarenhas, R. J., Shetti, N. P., & Aminabhavi, T. M. (2021). Recent advances and viability in biofuel production. Energy Conversion and Management: X, 10, 100070. https://doi.org/10.1016/j.ecmx.2020.100070
  145. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., & López Granados, M. (2016). Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. In Energy and Environmental Science 9(4), 1144–1189. https://doi.org/10.1039/c5ee02666k
  146. Masud, M. H., Rashid, M., Hossan, Md. N., & Ahmed, M. M. (2023). Domestic Waste To Energy, Technologies, Economics, and Challenges. Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-323-93940-9.00026-8
  147. Mata-Álvarez, J., Mace, Ş., & Llabrés, P. (2000). Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresource Technology, 74, 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7
  148. McIntosh, S., Nabi, M. N., Moghaddam, L., Brooks, P., Ghandehari, P. S., & Erler, D. (2021). Combined pyrolysis and sulphided NiMo/Al2O3 catalysed hydroprocessing in a multistage strategy for the production of biofuels from milk processing waste. Fuel, 295, 120602. https://doi.org/10.1016/j.fuel.2021.120602
  149. Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2014). 10.8 - Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (Second Edition) (pp. 273–359). Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00808-1
  150. Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61. https://doi.org/10.1016/j.bbrep.2017.03.003
  151. Mohd Hanafiah, K., Abd Mutalib, A. H., Miard, P., Goh, C. S., Mohd Sah, S. A., & Ruppert, N. (2022). Impact of Malaysian palm oil on sustainable development goals: co-benefits and trade-offs across mitigation strategies. Sustainability Science, 17(4), 1639–1661. https://doi.org/10.1007/s11625-021-01052-4
  152. Molino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25. https://doi.org/10.1016/j.jechem.2015.11.005
  153. Monceaux, D. A. (2019). Bioethanol from Starch: The US Experience. In M. Kaltschmitt (Ed.), Energy from Organic Materials (Biomass): A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition (pp. 955–996). Springer New York. https://doi.org/10.1007/978-1-4939-7813-7_1035
  154. Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Informacion 29, (1).. https://doi.org/10.3145/epi.2020.ene.03
  155. Mourshed, M., Kamal, M., Masuk, N. I., Chowdhury, S. A., & Masud, M. H. (2023). Anaerobic Digestion Process of Biomass. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-323-93940-9.00025-6
  156. Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815. https://doi.org/10.1016/j.jclepro.2023.136815
  157. Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., & Bhowmik, R. (2020). A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119, 109512. https://doi.org/10.1016/j.rser.2019.109512
  158. Mulgund, A. (2022). Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: a review in the energy NEXUS framework. Energy Nexus, 5, 100054. https://doi.org/10.1016/j.nexus.2022.100054
  159. Muscat, A., de Olde, E. M., de Boer, I. J. M., & Ripoll-Bosch, R. (2020). The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security, 25, 100330. https://doi.org/10.1016/j.gfs.2019.100330
  160. Nandi, S., Ahmed, S., & Khurpade, P. D. (2023). Chapter 5 - Anaerobic digestion of fruit and vegetable waste for biogas and other biofuels. In S. A. Mandavgane, I. Chakravarty, & A. K. Jaiswal (Eds.), Fruit and Vegetable Waste Utilization and Sustainability (pp. 101–119). Academic Press. https://doi.org/10.1016/B978-0-323-91743-8.00007-1
  161. National Environment Agency. (2019). Combined Heat and Power Systems Professional Level Elective Module of Singapore Certified Energy Manager (SCEM) Programme Acknowledgements The reference manual Combined Heat and Power (CHP) Systems for the Professional Level elective module of the Singapore Certified Energy Manager Programme was developed for the National Environment Agency. SCEM Reference Manual for Combined Heat and Power (CHP) Systems
  162. Ngan, N. V. C., Chan, F. M. S., Nam, T. S., Van Thao, H., Maguyon-Detras, M. C., Hung, D. V., Cuong, D. M., & Van Hung, N. (2020). Anaerobic Digestion of Rice Straw for Biogas Production. In M. Gummert, N. Van Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 65–92). Springer International Publishing. https://doi.org/10.1007/978-3-030-32373-8_5
  163. Nunes, L. J. R., & Silva, S. (2023). Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis. Logistics, 7(3). https://doi.org/10.3390/logistics7030048
  164. Olatoyan, O. J., Kareem, M. A., Adebanjo, A. U., Olawale, S. O. A., & Alao, K. T. (2023). Potential use of biomass ash as a sustainable alternative for fly ash in concrete production: A review. Hybrid Advances, 4, 100076. https://doi.org/10.1016/j.hybadv.2023.100076
  165. Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), 222–236. https://doi.org/10.1016/j.aoas.2019.12.006
  166. Osman, A. I., Mehta, N., Elgarahy, A. M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2021). Conversion of biomass to biofuels and life cycle assessment: a review. In Environmental Chemistry Letters ,19 (6), 4075–4118). https://doi.org/10.1007/s10311-021-01273-0
  167. Østergaard, P. A., Duic, N., Noorollahi, Y., & Kalogirou, S. (2023). Advances in renewable energy for sustainable development. Renewable Energy, 219, 119377. https://doi.org/10.1016/j.renene.2023.119377
  168. Pahnila, M., Koskela, A., Sulasalmi, P., & Fabritius, T. (2023). A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. In Energies (Vol. 16, Issue 19). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/en16196936
  169. Palacio, J. C. E., Santos, J. J. C. S., Renó, M. L. G., Júnior, J. C. F., Monica Carvalho, Reyes, A. M. M., & Rúa Orozco, D. J. (2018). Municipal Solid Waste Management and Energy Recovery. In I. H. Al-Bahadly (Ed.), Energy Conversion (p. Ch. 8). IntechOpen. https://doi.org/10.5772/intechopen.79235
  170. Pande, M., & Bhaskarwar, A. (2012). Biomass Conversion to Energy. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science (pp. 1–90). https://doi.org/10.1007/978-3-642-28418-2_1
  171. Pariasamy, S. G., Venkiteswaran, V. K., Kumar, J., & Awad, M. M. (2022). Industrial CHP with Steam Systems: A Review of Recent Case Studies, Trends and Relevance to Malaysian Industry. In Energies 15(20). https://doi.org/10.3390/en15207491
  172. Patel, A., & Shah, A. R. (2021). Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. Journal of Bioresources and Bioproducts, 6(2), 108–128. https://doi.org/10.1016/j.jobab.2021.02.001
  173. Petrovič, A., Cenčič Predikaka, T., Škodič, L., Vohl, S., & Čuček, L. (2023). Hydrothermal co-carbonization of sewage sludge and whey: Enhancement of product properties and potential application in agriculture. Fuel, 350, 128807. https://doi.org/10.1016/j.fuel.2023.128807
  174. Porosoff, M. D., Yan, B., & Chen, J. G. (2016). Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. In Energy and Environmental Science 9(1), 62–73).. https://doi.org/10.1039/c5ee02657a
  175. Qin, L., Wang, M., Zhu, J., Wei, Y., Zhou, X., & He, Z. (2021). Towards Circular Economy through Waste to Biomass Energy in Madagascar. Complexity, 2021. https://doi.org/10.1155/2021/5822568
  176. Radovanović, M. (2023). Chapter 7 - Strategic priorities of sustainable energy development. In M. Radovanović (Ed.), Sustainable Energy Management (Second Edition) (pp. 181–277). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-821086-4.00004-0
  177. Raheem, A., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., & Harun, R. (2015). Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews, 49, 990–999. https://doi.org/10.1016/j.rser.2015.04.186
  178. Rajendran, K., Mahapatra, D., Venkatraman, A. V., Muthuswamy, S., & Pugazhendhi, A. (2020). Advancing anaerobic digestion through two-stage processes: Current developments and future trends. Renewable and Sustainable Energy Reviews, 123, 109746. https://doi.org/10.1016/j.rser.2020.109746
  179. Rashidi, N. A., Chai, Y. H., & Yusup, S. (2022). Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges. Bioenergy Research.15(3), 1371–1386). https://doi.org/10.1007/s12155-022-10392-7
  180. Ray, R., Taylor, R., & Chapman, C. (2012). The deployment of an advanced gasification technology in the treatment of household and other waste streams. Process Safety and Environmental Protection, 90(3), 213–220. https://doi.org/10.1016/j.psep.2011.06.013
  181. Rejeb, A., Rejeb, K., & Treiblmaier, H. (2023). Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques. Information (Switzerland), 14, (7). https://doi.org/10.3390/info14070356
  182. REN21. (2020). gsr_2020_full_report_en. RENEWABLES 2020. https://www.ren21.net/wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf
  183. Rezania, S., Oryani, B., Nasrollahi, V. R., Darajeh, N., Lotfi Ghahroud, M., & Mehranzamir, K. (2023). Review on Waste-to-Energy Approaches toward a Circular Economy in Developed and Developing Countries. Processes,11(9). https://doi.org/10.3390/pr11092566
  184. Ruiz, H. A., Rodríguez-Jasso, R. M., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2013). Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainable Energy Reviews, 21, 35–51). https://doi.org/10.1016/j.rser.2012.11.069
  185. Sabin Guendehou G.H., Matthias Koch, Leif Hockstad, Riitta Pipatti, & Masato Yamada. (2006). INCINERATION AND OPEN BURNING OF WASTE. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/5_Volume5/V5_5_Ch5_IOB.pdf
  186. Sadeghi, O., Fazeli, A., Bakhtiari-Nejad, M., & Che Sidik, N. A. (2015). An Overview of Waste-to-Energy in Malaysia. In Applied Mechanics and Materials, 695. https://doi.org/10.4028/www.scientific.net/AMM.695.792
  187. Said, Z., Sharma, P., Thi Bich Nhuong, Q., Bora, B. J., Lichtfouse, E., Khalid, H. M., Luque, R., Nguyen, X. P., & Hoang, A. T. (2023). Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, 377, 128952. https://doi.org/10.1016/j.biortech.2023.128952
  188. Salami, N., & Skála, Z. (2015). Use of the steam as gasifying agent in fluidized bed gasifier. Chemical and Biochemical Engineering Quarterly, 29(1), 13–18. https://doi.org/10.15255/CABEQ.2014.2120
  189. Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, 8(2), e08905. https://doi.org/10.1016/j.heliyon.2022.e08905
  190. Salleh, S. F., Mohd Roslan, M. E., Abd Rahman, A., Shamsuddin, A. H., Tuan Abdullah, T. A. R., & Sovacool, B. K. (2020). Transitioning to a sustainable development framework for bioenergy in Malaysia: policy suggestions to catalyse the utilisation of palm oil mill residues. In Energy, Sustainability and Society, 10(1). BioMed Central Ltd. https://doi.org/10.1186/s13705-020-00269-y
  191. Samir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. In npj Materials Degradation 6 (1). Nature Publishing Group. https://doi.org/10.1038/s41529-022-00277-7
  192. Sankaran, R., Show, P. L., Nagarajan, D., & Chang, J.-S. (2018). Chapter 19 - Exploitation and Biorefinery of Microalgae. In T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, & S. K. Khanal (Eds.), Waste Biorefinery (pp. 571–601). Elsevier. https://doi.org/10.1016/B978-0-444-63992-9.00019-7
  193. Sara Budinis, Mathilde Fajardy, & Carl Greenfield. (2023, July 11). Carbon Capture, Utilisation and Storage. https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage
  194. Sara Tanigawa. (2017). Biogas: Converting Waste to Energy. www.eesi.org
  195. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27. https://doi.org/10.1016/j.renene.2011.06.045
  196. Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. H., Alhajeri, N. S., & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and carbon sequestration: a review. In Environmental Chemistry Letters (Vol. 20, Issue 5, pp. 2797–2851). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s10311-022-01458-1
  197. Schwartz, N. R., Paulsen, A. D., Blaise, M. J., Wagner, A. L., & Yelvington, P. E. (2020). Analysis of emissions from combusting pyrolysis products. Fuel, 274, 117863. https://doi.org/10.1016/j.fuel.2020.117863
  198. Seboka, A. D., Ewunie, G. A., Morken, J., Feng, L., & Adaramola, M. S. (2023). Potentials and prospects of solid biowaste resources for biofuel production in Ethiopia: a systematic review of the evidence. In Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s13399-023-04994-0
  199. Serfass, P. (2018). Biogas as a Waste Management Solution Turning “Waste” into Resources. https://www.eesi.org/files/Patrick_Serfass_052318.pdf
  200. Shadle, L. J., Indrawan, N., Breault, R. W., & Bennett, J. (2020). Gasification Technology. In M. Lackner, B. Sajjadi, & W.-Y. Chen (Eds.), Handbook of Climate Change Mitigation and Adaptation (pp. 1–90). Springer New York. https://doi.org/10.1007/978-1-4614-6431-0_40-4
  201. Sharew, S., Montastruc, L., Yimam, A., Negny, S., & Ferrasse, J.-H. (2022). Alternative Energy Potential and Conversion Efficiency of Biomass into Target Biofuels: A Case Study in Ethiopian Sugar Industry- Wonji-Shoa. Biomass, 2(4), 279–298. https://doi.org/10.3390/biomass2040019
  202. Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. In Fermentation, 6, (4).. https://doi.org/10.3390/fermentation6040106
  203. Sheldon, R. A. (2018). Metrics of Green Chemistry and Sustainability: Past, Present, and Future. In ACS Sustainable Chemistry and Engineering 6(1), 32–48).. https://doi.org/10.1021/acssuschemeng.7b03505
  204. Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., & Fennell, P. S. (2016). An overview of advances in biomass gasification. In Energy and Environmental Science 9(10), 2939–2977). https://doi.org/10.1039/c6ee00935b
  205. Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248. https://doi.org/10.1016/j.pecs.2017.04.001
  206. Silva, F. T. M., Bessa, L. P., Vieira, L. M., Moreira, F. S., de Souza Ferreira, J., Batista, F. R. X., & Cardoso, V. L. (2019). Dark fermentation effluent as substrate for hydrogen production from Rhodobacter capsulatus highlighting the performance of different fermentation systems. 3 Biotech, 9(4). https://doi.org/10.1007/s13205-019-1676-x
  207. Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., & Awasthi, M. K. (2019). Chapter 5 - Biofuel Production From Biomass: Toward Sustainable Development. In S. Kumar, R. Kumar, & A. Pandey (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 79–92). https://doi.org/10.1016/B978-0-444-64083-3.00005-1
  208. Singh, A. K., Pal, P., Rathore, S. S., Sahoo, U. K., Sarangi, P. K., Prus, P., & Dziekański, P. (2023). Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements. Energies, 16(14). https://doi.org/10.3390/en16145409
  209. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. In Bioresource Technology, 127, 500–507. https://doi.org/10.1016/j.biortech.2012.09.012
  210. Son, Y.-S., Jeon, J.-M., Kim, D.-H., Yang, Y.-H., Jin, Y.-S., Cho, B.-K., Kim, S.-H., Kumar, S., Lee, B.-D., & Yoon, J.-J. (2021). Improved bio-hydrogen production by overexpression of glucose-6-phosphate dehydrogenase and FeFe hydrogenase in Clostridium acetobutylicum. International Journal of Hydrogen Energy, 46(74), 36687–36695. https://doi.org/10.1016/j.ijhydene.2021.08.222
  211. Speirs, J., McGlade, C., & Slade, R. (2015). Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass. Energy Policy, 87, 654–664. https://doi.org/10.1016/j.enpol.2015.02.031
  212. Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., & Petrenko, Y. (2021). Renewable energy in the sustainable development of electrical power sector: A review. Energies, 14(24). https://doi.org/10.3390/en14248240
  213. Su, H., Cheng, J., Zhou, J., Song, W., & Cen, K. (2009). Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. International Journal of Hydrogen Energy, 34, 8846–8853. https://doi.org/10.1016/j.ijhydene.2009.09.001
  214. Subramanian, A. S. R., Gundersen, T., Barton, P. I., & Adams, T. A. (2022). Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system. Energy, 250, 123722. https://doi.org/10.1016/j.energy.2022.123722
  215. Suresh, A., Kumar, P., Kumar, N., & Siddarth, N. (2020). Conversion of green algal biomass into bioenergy by pyrolysis. A review. Environmental Chemistry Letters, 18. https://doi.org/10.1007/s10311-020-00990-2
  216. Sütterlin, B., & Siegrist, M. (2017). Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power. Energy Policy, 106, 356–366. https://doi.org/10.1016/j.enpol.2017.03.061
  217. Tamošiūnas, A., Gimžauskaitė, D., Aikas, M., Uscila, R., Snapkauskienė, V., Zakarauskas, K., & Praspaliauskas, M. (2023). Biomass gasification to syngas in thermal water vapor arc discharge plasma. Biomass Conversion and Biorefinery, 13(18), 16373–16384. https://doi.org/10.1007/s13399-023-03828-3
  218. Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591. https://doi.org/10.1016/j.est.2021.102591
  219. Tarafdar, A., G., S., K., Y., Rattu, G., Negi, T., Awasthi, M. K., Hoang, A., & Sirohi, R. (2023). Environmental pollution mitigation through utilization of carbon dioxide by microalgae. Environmental Pollution, 328. https://doi.org/10.1016/j.envpol.2023.121623
  220. Traven, L. (2023). Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Studies in Chemical and Environmental Engineering, 8, 100491. https://doi.org/10.1016/j.cscee.2023.100491
  221. Tse, T. J., Wiens, D. J., & Reaney, M. J. T. (2021). Production of bioethanol—a review of factors affecting ethanol yield. In Fermentation 7(4). https://doi.org/10.3390/fermentation7040268
  222. Tshikovhi, A., & Motaung, T. E. (2023). Technologies and Innovations for Biomass Energy Production. In Sustainability (Switzerland), 15(16). https://doi.org/10.3390/su151612121
  223. Tshikovhi, A., & Tshwafo, M. (2023). Technologies and Innovations for Biomass Energy Production. Sustainability, 15, 12121. https://doi.org/10.3390/su151612121
  224. Tsigkou, K., Zagklis, D., Parasoglou, M., Zafiri, C., & Kornaros, M. (2022). Proposed protocol for rate-limiting step determination during anaerobic digestion of complex substrates. Bioresource Technology, 361, 127660. https://doi.org/10.1016/j.biortech.2022.127660
  225. Tsui, T.-H., & Wong, J. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy, 1. https://doi.org/10.1007/s42768-019-00013-z
  226. Tullu, M. (2019). Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key. In Saudi Journal of Anaesthesia 13(5), S12–S17). Wolters Kluwer Medknow Publications. https://doi.org/10.4103/sja.SJA_685_18
  227. Tumuluru, J. S., Ghiasi, B., Soelberg, N. R., & Sokhansanj, S. (2021). Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.728140
  228. Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal (Vol. 6(2), 962–979).. https://doi.org/10.18331/BRJ2019.6.2.3
  229. Udayan, A., Pandey, A. K., Sirohi, R., Sreekumar, N., Sang, B. I., Sim, S. J., Kim, S. H., & Pandey, A. (2023). Production of microalgae with high lipid content and their potential as sources of nutraceuticals. In Phytochemistry Reviews, 22(4), 833–860). https://doi.org/10.1007/s11101-021-09784-y
  230. Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances. 8(9), 2819–2837. https://doi.org/doi: 10.1515/psr-2021-0068
  231. Urrutia, R. I., Gutierrez, V. S., Stefanazzi, N., Volpe, M. A., & Werdin González, J. O. (2022). Pyrolysis liquids from lignocellulosic biomass as a potential tool for insect pest management: A comprehensive review. Industrial Crops and Products 177). https://doi.org/10.1016/j.indcrop.2022.114533
  232. Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. In Bioengineered,10(1), 437–458). https://doi.org/10.1080/21655979.2019.1673937
  233. Wang, Z., Hu, Y., Wang, S., Wu, G., & Zhan, X. (2023). A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies. Renewable and Sustainable Energy Reviews, 176, 113208. https://doi.org/10.1016/j.rser.2023.113208
  234. Werkneh, A. A. (2022a). Biogas impurities: environmental and health implications, removal technologies and future perspectives. In Heliyon, 8, (10). https://doi.org/10.1016/j.heliyon.2022.e10929
  235. Werkneh, A. A. (2022b). Biogas impurities: environmental and health implications, removal technologies and future perspectives. Heliyon, 8(10), e10929. https://doi.org/10.1016/j.heliyon.2022.e10929
  236. Wienchol, P., Szlęk, A., & Ditaranto, M. (2020). Waste-to-energy technology integrated with carbon capture – Challenges and opportunities. Energy, 198, 117352. https://doi.org/10.1016/j.energy.2020.117352
  237. Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., & Li, C. (2016). Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Research 9(1), 1–14. https://doi.org/10.1007/s12155-015-9694-y
  238. Xue, C., & Cheng, C. (2019). Chapter Two - Butanol production by Clostridium. In Y. Li & X. Ge (Eds.), Advances in Bioenergy, 4, 35–77, https://doi.org/10.1016/bs.aibe.2018.12.001
  239. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
  240. Yamakawa, C. K., Qin, F., & Mussatto, S. I. (2018). Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass and Bioenergy, 119, 54–60. https://doi.org/10.1016/j.biombioe.2018.09.007
  241. Yansaneh, O. Y., & Zein, S. H. (2022). Recent Advances on Waste Plastic Thermal Pyrolysis: A Critical Overview. Processes 10(2).. https://doi.org/10.3390/pr10020332
  242. Ye, B., Zhang, R., Cao, J., Lei, K., & Liu, D. (2020). The study of co-combustion characteristics of coal and microalgae by single particle combustion and TGA methods. Journal of the Energy Institute, 93(2), 508–517. https://doi.org/10.1016/j.joei.2019.07.001
  243. Yong, Z. J., Bashir, M. J. K., Ng, C. A., Sethupathi, S., Lim, J. W., & Show, P. L. (2019). Sustainable waste-to-energy development in Malaysia: Appraisal of environmental, financial, and public issues related with energy recovery from municipal solid waste. Processes 7(10). https://doi.org/10.3390/pr7100676
  244. Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301. https://doi.org/10.1016/j.biortech.2020.122784
  245. Youcai, Z., & Tao, Z. (2021). Chapter 5 - Combined anaerobic fermentation biohydrogen and biomethane production for sewage sludge and food waste. In Z. Youcai & Z. Tao (Eds.), Biohydrogen Production and Hybrid Process Development (pp. 311–444). Elsevier. https://doi.org/10.1016/B978-0-12-821728-3.00005-0
  246. Yu, I. K. M., & Tsang, D. C. W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716–732. https://doi.org/10.1016/j.biortech.2017.04.026
  247. Zaman, C. Z., Pal, K., Yehye, W. A., Sagadevan, S., Shah, S. T., Adebisi, G. A., Marliana, E., Rafique, R. F., & Johan, R. Bin. (2017). Pyrolysis: A Sustainable Way to Generate Energy from Waste. In Pyrolysis. InTech. https://doi.org/10.5772/intechopen.69036
  248. Zamri, M. F. M. A., Milano, J., Shamsuddin, A. H., Roslan, M. E. M., Salleh, S. F., Rahman, A. A., Bahru, R., Fattah, I. M. R., & Mahlia, T. M. I. (2022). An overview of palm oil biomass for power generation sector decarbonization in Malaysia: Progress, challenges, and prospects. Wiley Interdisciplinary Reviews: Energy and Environment, 11(4). https://doi.org/10.1002/wene.437
  249. Zeng, Y., & Han, X. (2023). Co-Processing Biomass With Fossil Fuels. In Reference Module in Earth Systems and Environmental Sciences. Elsevier. https://doi.org/10.1016/B978-0-323-93940-9.00060-8
  250. Zeng, Y., Zhao, S., Yang, S., & Ding, S. Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. In Current Opinion in Biotechnology, 27, 98–45. https://doi.org/10.1016/j.copbio.2013.09.008
  251. Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33. https://doi.org/10.1016/j.biortech.2015.08.102
  252. Zhao, H. (2022). Chapter 18 - Biomass burning emission and impacts on air pollution in China. In R. P. Singh (Ed.), Asian Atmospheric Pollution (pp. 335–347). https://doi.org/10.1016/B978-0-12-816693-2.00024-X
  253. Zhou, C., Chen, L., Liu, C., Wang, J., Xing, X., Liu, Y., Chen, Y., Chao, L., Dai, J., Zhang, Y., Yu, M., Yuan, Y., Yao, B., & Li, Y. (2022). Interconnected pyrolysis and gasification of typical biomass in a novel dual fluidized bed. Energy Conversion and Management, 271, 116323. https://doi.org/10.1016/j.enconman.2022.116323
  254. Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A., Simal-Gandara, J., Cao, H., Xiao, J., & Barba, F. J. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 384, 132236. https://doi.org/10.1016/j.foodchem.2022.132236
  255. Zikhathile, T., Atagana, H., Bwapwa, J., & Sawtell, D. (2022). A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment. In International Journal of Environmental Research and Public Health19, (19). https://doi.org/10.3390/ijerph191911967

Last update:

No citation recorded.

Last update: 2024-07-16 04:58:47

No citation recorded.