skip to main content

Biomass and organic waste conversion for sustainable bioenergy: A comprehensive bibliometric analysis of current research trends and future directions

1Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak, Malaysia

2Institute of Sustainable Energy, Universiti Tenaga Nasional (UNITEN), Malaysia

Received: 22 Feb 2024; Revised: 13 Apr 2024; Accepted: 15 May 2024; Available online: 22 Jun 2024; Published: 1 Jul 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

The rising demand for renewable energy sources has fueled interest in converting biomass and organic waste into sustainable bioenergy. This study employs a bibliometric analysis (2013-2023) of publications to assess trends, advancements, and future prospects in this field. The analysis explores seven key research indicators, including publication trends, leading contributors, keyword analysis, and highly cited papers.  We begin with a comprehensive overview of biomass as a renewable energy source and various waste-to-energy technologies.  Employing Scopus and Web of Science databases alongside Biblioshiny and VOSviewer for analysis, the study investigates publication patterns, citation networks, and keyword usage. This systematic approach unveils significant trends in research focus and identifies prominent research actors (countries and institutions). Our findings reveal a significant increase in yearly publications, reflecting the growing global focus on biomass and organic waste conversion. Leading contributors include China, the United States, India, and Germany.  Analysis of keywords identifies commonly used terms like "biofuels," "pyrolysis," and "lignocellulosic biomass." The study concludes by proposing future research directions, emphasizing advanced conversion technologies, integration of renewable energy sources, and innovative modelling techniques.

Fulltext View|Download
Keywords: Bibliometric analysis; Biomass; Bioenergy; Renewable energy; Organic waste conversion
Funding: PETRONAS – Malaysia via grant YUTP – FRG, Cost Center No: 015LC0-404.

Article Metrics:

  1. Abbas, T., Issa, M., & Ilinca, A. (2020). Biomass Cogeneration Technologies: A Review. Journal of Sustainable Bioenergy Systems, 10(01), 1–15.
  2. Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290.
  3. Aboudi, K., Álvarez-Gallego, C. J., Romero-García, L. I., & Fernández-Güelfo, L. A. (2021). Biogas, biohydrogen, and polyhydroxyalkanoates production from organic waste in the circular economy context. Sustainable Biofuels: Opportunities and Challenges, 305–343.
  4. Abubakar, I. R., Maniruzzaman, K. M., Dano, U. L., AlShihri, F. S., AlShammari, M. S., Ahmed, S. M. S., Al-Gehlani, W. A. G., & Alrawaf, T. I. (2022). Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. In International Journal of Environmental Research and Public Health 19(19).
  5. Adams, P., Bridgwater, T., Lea-Langton, A., Ross, A., & Watson, I. (2018). Biomass Conversion Technologies. In Greenhouse Gas Balances of Bioenergy Systems (pp. 107–139).
  6. ADB. (2020). Waste to Energy in the Age of the Circular Economy:
  7. Adegboye, M. F., Ojuederie, O. B., Talia, P. M., & Babalola, O. O. (2021). Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnology for Biofuels, 14(1), 5.
  8. Adekunle, K. F., & Okolie, J. A. (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology, 06(03), 205–212.
  9. Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653.
  10. Ahmad, Q. ul A., & Qazi, J. I. (2014). Thermophilic fermentations of lignocellulosic substrates and economics of biofuels: Prospects in Pakistan. In International Journal of Energy and Environmental Engineering, 5(2–3), 1–14.
  11. Aidonojie, P. A., Ukhurebor, K. E., Oaihimire, I. E., Ngonso, B. F., Egielewa, P. E., Akinsehinde, B. O., Kusuma, H. S., & Darmokoesoemo, H. (2023). Bioenergy revamping and complimenting the global environmental legal framework on the reduction of waste materials: A facile review. Heliyon, 9(1), e12860.
  12. Akubude, V. C., Nwaigwe, K. N., & Dintwa, E. (2019). Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Materials Science for Energy Technologies, 2(2), 216–225.
  13. Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2022). Waste‐to‐energy nexus: An overview of technologies and implementation for sustainable development. Cleaner Energy Systems, 3, 100034.
  14. Al-asadi, M., Miskolczi, N., & Eller, Z. (2020). Pyrolysis-gasification of wastes plastics for syngas production using metal modified zeolite catalysts under different ratio of nitrogen/oxygen. Journal of Cleaner Production, 271, 122186.
  15. Alex Ryzhkov. (2023). The Complete Guide to Biomass Power Plant Business Financing and Raising Capital.
  16. Al-Haj Ibrahim, H. (2020). Introductory Chapter: Pyrolysis. In Recent Advances in Pyrolysis. IntechOpen.
  17. Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., & Ahmad Asad, S. (2014). Microbial ecology of anaerobic digesters: The key players of anaerobiosis. In The Scientific World Journal (Vol. 2014). Hindawi Limited.
  18. Alishah Aratboni, H., Rafiei, N., Garcia-Granados, R., Alemzadeh, A., & Morones-Ramírez, J. R. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 18(1), 178.
  19. AlMallahi, M. N., Asaad, S. M., Inayat, A., Harby, K., & Elgendi, M. (2023). Analysis of solar-powered adsorption desalination systems: Current research trends, developments, and future perspectives. International Journal of Thermofluids, 20.
  20. Alnouss, A., Mckay, G., & Al-Ansari, T. (2019). Superstructure Optimization for the Production of Fuels, Fertilizers and Power using Biomass Gasification (pp. 301–306).
  21. Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715.
  22. Amalina, F., Razak, A. S. A., Krishnan, S., Sulaiman, H., Zularisam, A. W., & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. Journal of Hazardous Materials Advances, 7, 100134.
  23. Amornraksa, S., Subsaipin, I., Simasatitkul, L., & Assabumrungrat, S. (2020). Systematic design of separation process for bioethanol production from corn stover. BMC Chemical Engineering, 2(1), 10.
  24. Amulen, J., Kasedde, H., Serugunda, J., & Lwanyaga, J. D. (2022). The potential of energy recovery from municipal solid waste in Kampala City, Uganda by incineration. Energy Conversion and Management: X, 14, 100204.
  25. Andersen, R. A., & Lewin, R. A. (2023). “algae.” Encyclopedia Britannica.
  26. Antunes, F. A. F., Chandel, A. K., Terán-Hilares, R., Ingle, A. P., Rai, M., dos Santos Milessi, T. S., da Silva, S. S., & dos Santos, J. C. (2019). Overcoming challenges in lignocellulosic biomass pretreatment for second-generation (2G) sugar production: emerging role of nano, biotechnological and promising approaches. 3 Biotech , 9(6).
  27. Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. In Processes, 7(8), 1–19.
  28. Anvari, S., Aguado, R., Jurado, F., Fendri, M., Zaier, H., Larbi, A., & Vera, D. (2024). Analysis of agricultural waste/byproduct biomass potential for bioenergy: The case of Tunisia. Energy for Sustainable Development, 78, 101367.
  29. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975.
  30. Bähner, F. D., Prado-Rubio, O. A., & Huusom, J. K. (2021). Challenges in Optimization and Control of Biobased Process Systems: An Industrial-Academic Perspective. In Industrial and Engineering Chemistry Research, 60(42), 14985–15003..
  31. Bandyopadhyay-Ghosh, S., Ghosh, S. B., & Sain, M. (2015). 19 - The use of biobased nanofibres in composites. In O. Faruk & M. Sain (Eds.), Biofiber Reinforcements in Composite Materials (pp. 571–647). Woodhead Publishing.
  32. Bardhan, P., Deka, A., Bhattacharya, S. S., Mandal, M., & Kataki, R. (2022). Chapter 18 - Economical aspect in biomass to biofuel production. In S. Yusup & N. A. Rashidi (Eds.), Value-Chain of Biofuels, 395–427.
  33. Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. In Frontiers in Energy Research, 6.
  34. Batista, A. P., Gouveia, L., & Marques, P. A. S. S. (2018). Fermentative hydrogen production from microalgal biomass by a single strain of bacterium Enterobacter aerogenes – Effect of operational conditions and fermentation kinetics. Renewable Energy, 119, 203–209.
  35. Battista, F., Frison, N., Pavan, P., Cavinato, C., Gottardo, M., Fatone, F., Eusebi, A., Majone, M., Zeppilli, M., Valentino, F., Fino, D., Tommasi, T., & Bolzonella, D. (2019). Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and added value bio‐products. Journal of Chemical Technology & Biotechnology, 95.
  36. Beluhan, S., Mihajlovski, K., Šantek, B., & Ivančić Šantek, M. (2023). The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing. Energies, 16(19)..
  37. Ben-Iwo, J., Manovic, V., & Longhurst, P. (2016). Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renewable and Sustainable Energy Reviews, 63, 172–192.
  38. Bennett, P and Buckley, P. (2022). IEA-Bioenergy-Annual-Report-2021.
  39. Bera, T., Inglett, K., & Wilkie, A. (2020). Biofuel: Concepts and Considerations. EDIS, 2020.
  40. Bharadwaj, G., Chopde, S., Taluja, R., Lalitha, G., Chandrashekar, R., & Dhahi, H. A. (2023). Closing the Loop: Advances in Materials, Energy, and Waste Management. E3S Web of Conferences, 453, 01024.
  41. Bian, R., Ma, B., Zhu, X., Wang, W., Li, L., Joseph, S., Liu, X., & Cheng, K. (2016). Pyrolysis of crop residues in a mobile bench-scale pyrolyser: Product Characterization and Environmental Performance. Journal of Analytical and Applied Pyrolysis, 119.
  42. Bibra, M., Samanta, D., Sharma, N. K., Singh, G., Johnson, G. R., & Sani, R. K. (2023). Food Waste to Bioethanol: Opportunities and Challenges. In Fermentationm 9(1).
  43. Bisinella, V., Hulgaard, T., Riber, C., Damgaard, A., & Christensen, T. H. (2021). Environmental assessment of carbon capture and storage (CCS) as a post-treatment technology in waste incineration. Waste Management, 128, 99–113.
  44. Blair, M. J., Gagnon, B., Klain, A., & Kulišić, B. (2021). Contribution of biomass supply chains for bioenergy to sustainable development goals. Land, 10(2), 1–28.
  45. Blasi, A., Verardi, A., Lopresto, C. G., Siciliano, S., & Sangiorgio, P. (2023). Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview. Recycling, 8(4).
  46. Bolan, N., Hoang, A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K.-H., Kirkham, M., Kua, H., Kumar, M., Kwon, E., Ok, Y. S., Perera, V., Rinklebe, J., Shaheen, S., Sarkar, B., Sarmah, A., & Van Zwieten, L. (2021). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67, 150–200.
  47. Bolívar Caballero, J. J., Zaini, I. N., & Yang, W. (2022). Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels. Applications in Energy and Combustion Science, 10, 100064.
  48. Bošnjaković, M., & Sinaga, N. (2020). The perspective of large-scale production of algae biodiesel. Applied Sciences, 10(22), 1–26.
  49. Britannica. (2023, November 7). fermentation . Encyclopedia Britannica.
  50. Broda, M., Yelle, D. J., & Serwańska, K. (2022). Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions. In Molecules, 27 (24).
  51. Brunner, P. H., & Rechberger, H. (2015). Waste to energy – key element for sustainable waste management. Waste Management, 37, 3–12.
  52. Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., … Mac Dowell, N. (2018). Carbon capture and storage (CCS): The way forward. Energy and Environmental Science, 11(5), 1062–1176.
  53. Bušić, A., Mardetko, N., Kundas, S., Morzak, G., Belskaya, H., Šantek, M. I., Komes, D., Novak, S., & Šantek, B. (2018). Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology ,56(3), 289–311.
  54. Cai, J., He, Y., Yu, X., Banks, S. W., Yang, Y., Zhang, X., Yu, Y., Liu, R., & Bridgwater, A. V. (2017). Review of physicochemical properties and analytical characterization of lignocellulosic biomass. In Renewable and Sustainable Energy Reviews, 76, 309–322.
  55. Canabarro, N., Soares, J. F., Anchieta, C. G., Kelling, C. S., & Mazutti, M. A. (2013). Thermochemical processes for biofuels production from biomass. Sustainable Chemical Processes, 1(1), 22.
  56. Catherine Lane. (2023, November 9). Biomass energy pros and cons. Solar Reviews.
  57. Celebi, A. D., Sharma, S., Ensinas, A. V., & Maréchal, F. (2019). Next generation cogeneration system for industry – Combined heat and fuel plant using biomass resources. Chemical Engineering Science, 204, 59–75.
  58. Ceron-Chafla, P., Kleerebezem, R., Rabaey, K., Van Lier, J. B., & Lindeboom, R. E. F. (2020). Direct and Indirect Effects of Increased CO2Partial Pressure on the Bioenergetics of Syntrophic Propionate and Butyrate Conversion. Environmental Science and Technology, 54(19), 12583–12592.
  59. Chen, H., & Wang, L. (2017). Chapter 1. Introduction.
  60. Chen, W.-H., Lin, B.-J., Lin, Y.-Y., Chu, Y.-S., Ubando, A. T., Show, P. L., Ong, H. C., Chang, J.-S., Ho, S.-H., Culaba, A. B., Pétrissans, A., & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications and challenges. Progress in Energy and Combustion Science, 82, 100887.
  61. Chhandama, M. V. L., Ruatpuia, J. V. L., Ao, S., Chetia, A. C., Satyan, K. B., & Rokhum, S. L. (2023). Microalgae as a sustainable feedstock for biodiesel and other production industries: Prospects and challenges. Energy Nexus, 12, 100255.
  62. Chin, K. L., & Hng, P. S. (2013). A Real Story of Bioethanol from Biomass: Malaysia Perspective. In Biomass Now - Sustainable Growth and Use. InTech.
  63. Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., Chin, J. K., & Pan, G. T. (2020). Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes, 8(1).
  64. Chung, J. N. (2013). Grand challenges in bioenergy and biofuel research: Engineering and technology development, environmental impact, and sustainability. Frontiers in Energy Research, 1(SEP).
  65. Clauser, N. M., González, G., Mendieta, C. M., Kruyeniski, J., Area, M. C., & Vallejos, M. E. (2021). Biomass waste as sustainable raw material for energy and fuels. Sustainability (Switzerland), 13(2), 1–21.
  66. Czekała, W., Nowak, M., & Bojarski, W. (2023). Characteristics of Substrates Used for Biogas Production in Terms of Water Content. In Fermentation, 9(5).
  67. Daneshvar, E., Sik Ok, Y., Tavakoli, S., Sarkar, B., Shaheen, S. M., Hong, H., Luo, Y., Rinklebe, J., Song, H., & Bhatnagar, A. (2021). Insights into upstream processing of microalgae: A review. Bioresource Technology, 329, 124870.
  68. Das, A., Das, S., Das, N., Pandey, P., Ingti, B., Panchenko, V., Bolshev, V., Kovalev, A., & Pandey, P. (2023). Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials. Agriculture (Switzerland), 13, (9).
  69. Dawod, A. (2021). Pyrolysis of biomass.
  70. Department of Energy. (2015). Biomass Basics: The Facts About Bioenergy.
  71. Deshmukh, R., Jacobson, A., Chamberlin, C., & Kammen, D. (2013). Thermal gasification or direct combustion? Comparison of advanced cogeneration systems in the sugarcane industry. Biomass and Bioenergy, 55, 163–174.
  72. Destek, M. A., & Sinha, A. (2020). Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. Journal of Cleaner Production, 242.
  73. Devi, M., & Rawat, S. (2021). A comprehensive review of the pyrolysis process: From carbon nanomaterial synthesis to waste treatment. In Oxford Open Materials Science, 1(1).
  74. Dhawane, S. H., Al-Sakkari, E. G., & Yadav, D. (2022). Chapter 15 - Cost-effective viable solutions for existing technologies. In D. Yadav, P. Kumar, P. Singh, & D. A. Vallero (Eds.), Hazardous Waste Management (pp. 381–395). Elsevier.
  75. Dhyani, V., & Bhaskar, T. (2018). A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 129, 695–716.
  76. Dimitriadis, A., & Bezergianni, S. (2017). Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renewable and Sustainable Energy Reviews, 68,113–125.
  77. Ding, Y., Xi, Y., Gao, H., Wang, J., Wei, W., & Zhang, R. (2022). Porosity of municipal solid waste incinerator bottom ash effects on asphalt mixture performance. Journal of Cleaner Production, 369, 133344.
  78. Dong, L., Qi, W., Sun, Y., Kong, X., & Zhang, Y. (2009). Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. International Journal of Hydrogen Energy - INT J HYDROGEN ENERG, 34, 812–820.
  79. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133.
  80. Du, Y., Zou, W., Zhang, K., Ye, G., & Yang, J. (2020). Advances and Applications of Clostridium Co-culture Systems in Biotechnology. Frontiers in Microbiology, 11.
  81. Ebrahimzadeh, G., Alimohammadi, M., Kahkah, M. R. R., & Mahvi, A. H. (2021). Relationship between algae diversity and water quality- a case study: Chah Niemeh reservoir Southeast of Iran. Journal of Environmental Health Science and Engineering, 19(1), 437–443.
  82. EEA. (2020). Bio-waste in Europe-turning challenges into opportunities. European Environment Agency.
  83. EIA. (2022). Biomass explained: Biomass and the environment. U.S. Energy Information Administration.
  84. Elliott, D. C., Biller, P., Ross, A. B., Schmidt, A. J., & Jones, S. B. (2015). Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresource Technology,178, 147–156)..
  85. Erdiwansyah, Gani, A., Zaki, M., Mamat, R., Nizar, M., Rosdi, S. M., Yana, S., & Sarjono, R. E. (2023). Analysis of technological developments and potential of biomass gasification as a viable industrial process: A review. Case Studies in Chemical and Environmental Engineering, 8, 100439.
  86. EUBA. (2023a). Environmental benefits of biomass. European Biomass Industry Association.
  87. EUBA. (2023b). R&D orientations to bioenergy. European Biomass Industry Association.
  88. Fakruhayat, M., & Rashid, A. (2023). How to Conduct a Bibliometric Analysis using R Packages: A Comprehensive Guidelines. In Journal of Tourism, Hospitality & Culinary Arts ,15(1)
  89. Farghali, M., Osman, A. I., Umetsu, K., & Rooney, D. W. (2022). Integration of biogas systems into a carbon zero and hydrogen economy: a review. Environmental Chemistry Letters , 20(5), 2853–2927).
  90. Fasaei, F., Bitter, J. H., Slegers, P. M., & van Boxtel, A. J. B. (2018). Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Research, 31, 347–362.
  91. Ferdoush, Md. R., Aziz, R. Al, Karmaker, C. L., Debnath, B., Limon, M. H., & Bari, A. B. M. M. (2024). Unraveling the challenges of waste-to-energy transition in emerging economies: Implications for sustainability. Innovation and Green Development, 3(2), 100121.
  92. Fiala, M., & Nonini, L. (2018). Biomass and biofuels. EPJ Web of Conferences, 189, 00006.
  93. Fiore, M., Magi, V., & Viggiano, A. (2020). Internal combustion engines powered by syngas: A review. Applied Energy, 276, 115415.
  94. Fuentes-Cortés, L. F., Zavala, V. M., González-Campos, J. B., & Ponce-Ortega, J. M. (2017). Optimal Coupling of Demand Patterns for Improving the Performance of CHP Systems. In A. Espuña, M. Graells, & L. Puigjaner (Eds.), Computer Aided Chemical Engineering, 40, 1909–1914. Elsevier.
  95. Gabrielli, P., Rosa, L., Gazzani, M., Meys, R., Bardow, A., Mazzotti, M., & Sansavini, G. (2023). Net-zero emissions chemical industry in a world of limited resources. One Earth, 6(6), 682–704.
  96. Gao, Y., Wang, M., Raheem, A., Wang, F., Wei, J., Xu, D., Song, X., Bao, W., Huang, A., Zhang, S., & Zhang, H. (2023). Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters. ACS Omega, 8(35), 31620–31631.
  97. Garba, A. (2020). Biomass Conversion Technologies for Bioenergy Generation: An Introduction.
  98. Garver, M. P., & Liu, S. (2014). Chapter 27 - Development of Thermochemical and Biochemical Technologies for Biorefineries. In V. K. Gupta, M. G. Tuohy, C. P. Kubicek, J. Saddler, & F. Xu (Eds.), Bioenergy Research: Advances and Applications (pp. 457–488). Elsevier.
  99. GGI Insights. (2023). Bioenergy: Sustainable Solutions for Renewable Energy. Gray Group International.,energy%20system%20can%20be%20achieved
  100. Gnanasekaran, L., Priya, A. K., Thanigaivel, S., Hoang, T. K. A., & Soto-Moscoso, M. (2023). The conversion of biomass to fuels via cutting-edge technologies: Explorations from natural utilization systems. Fuel, 331, 125668.
  101. Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass. In Renewable and Sustainable Energy Reviews, 81, 1378–1392.
  102. Greenvolt. (2023). Energy from Biomass: Why Does Transforming Matter? Biomass Energy.
  103. Grierson, S., Strezov, V., & Shah, P. (2011). Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresource Technology, 102, 8232–8240.
  104. Gumisiriza, R., Hawumba, J. F., Okure, M., & Hensel, O. (2017). Biomass waste-to-energy valorisation technologies: A review case for banana processing in Uganda. Biotechnology for Biofuels, 10(1).
  105. Gupta, S., Mondal, P., Borugadda, V. B., & Dalai, A. K. (2021). Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive review. Environmental Technology & Innovation, 21, 101276.
  106. Haque, N., & Azad, A. K. (2023). Comparative Study of Hydrogen Production from Organic Fraction of Municipal Solid Waste and Its Challenges: A Review. Energies, 16(23).
  107. Harirchi, S., Wainaina, S., Sar, T., Nojoumi, S. A., Parchami, M., Parchami, M., Varjani, S., Khanal, S. K., Wong, J., Awasthi, M. K., & Taherzadeh, M. J. (2022). Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered,13(3), 6521–6557).
  108. Hasan, M., Abedin, M. Z., Amin, M. Bin, Nekmahmud, Md., & Oláh, J. (2023). Sustainable biofuel economy: A mapping through bibliometric research. Journal of Environmental Management, 336, 117644.
  109. Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., & Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability (Switzerland), 14(8).
  110. How, B. S., Ngan, S. L., Hong, B. H., Lam, H. L., Ng, W. P. Q., Yusup, S., Ghani, W. A. W. A. K., Kansha, Y., Chan, Y. H., Cheah, K. W., Shahbaz, M., Singh, H. K. G., Yusuf, N. R., Shuhaili, A. F. A., & Rambli, J. (2019). An outlook of Malaysian biomass industry commercialisation: Perspectives and challenges. Renewable and Sustainable Energy Reviews, 113, 109277.
  111. IEA. (2020). Outlook for biogas and Prospects for organic growth World Energy Outlook Special Report biomethane.
  112. IEA, & OECD. (2011). Key points FACT SHEET Low Carbon Green Growth Roadmap for Asia and the Pacific.
  113. Jaiswal, K. K., Chowdhury, C. R., Yadav, D., Verma, R., Dutta, S., Jaiswal, K. S., SangmeshB, & Karuppasamy, K. S. K. (2022). Renewable and sustainable clean energy development and impact on social, economic, and environmental health. Energy Nexus, 7, 100118.
  114. Jarvie, M. E. (2023). “anaerobic digestion.” Encyclopedia Britannica.
  115. Junginger, M. (2013). Key messages bioenergy- A Sustainable and reliable energy source:A review of status and prospects
  116. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022a). Biogas Production and Applications in the Sustainable Energy Transition. Journal of Energy, 2022, 1–43.
  117. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022b). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research (Vol. 9).
  118. Kabeyi, M. J. B., & Olanrewaju, O. A. (2023). Smart grid technologies and application in the sustainable energy transition: a review. International Journal of Sustainable Energy, 42(1), 685–758.
  119. Kalak, T. (2023). Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. In Energies 16, (4).
  120. Kataya, G., Cornu, D., Bechelany, M., Hijazi, A., & Issa, M. (2023). Biomass Waste Conversion Technologies and Its Application for Sustainable Environmental Development—A Review. Agronomy, 13(11), 2833.
  121. Khan, K. A., Quamar, M. M., Al-Qahtani, F. H., Asif, M., Alqahtani, M., & Khalid, M. (2023). Smart grid infrastructure and renewable energy deployment: A conceptual review of Saudi Arabia. Energy Strategy Reviews, 50, 101247.
  122. Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories 17(1).
  123. Khan, S., Das, P., Abdul Quadir, M., Thaher, M. I., Mahata, C., Sayadi, S., & Al-Jabri, H. (2023). Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation 9(3)..
  124. Khurram Shahzad, Baozhou Lu, Daud Abdul, Adnan Safi, Muhammad Umar, & Numan Khan Afridi. (2023). Assessment of biomass energy barriers towards sustainable development: Application of Pythagorean fuzzy AHP. Geological Journal, 58(4), 1607–1622
  125. Kitessa, W. M., Fufa, F., & Abera, D. (2022). Biogas Production and Biofertilizer Estimation from Anaerobic Co-Digestion of Blends of Wastewater and Microalgae. International Journal of Chemical Engineering, 2022.
  126. Kitessa, W. M., Fufa Feyessa, F., & Abera, D. (2022). Biogas Production and Biofertilizer Estimation from Anaerobic Co-Digestion of Blends of Wastewater and Microalgae. International Journal of Chemical Engineering, 2022, 1–10.
  127. Klinghoffer, N. B., Themelis, N. J., & Castaldi, M. J. (2013). 1 - Waste to energy (WTE): an introduction. In N. B. Klinghoffer & M. J. Castaldi (Eds.), Waste to Energy Conversion Technology (pp. 3–14). Woodhead Publishing.
  128. Kotarska, K., Dziemianowicz, W., & Swierczyńska, A. (2019). Study on the sequential combination of bioethanol and biogas production from corn straw. Molecules, 24(24).
  129. Kumar, A. K., & Sharma, S. (2017a). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing, 4(1), 7.
  130. Kumar, A. K., & Sharma, S. (2017b). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. In Bioresources and Bioprocessing 4(1)..
  131. Kurth, J. M., Huub, &, Op Den Camp, J. M., & Welte, C. U. (2020). Several ways one goal-methanogenesis from unconventional substrates.
  132. Lam, M. K., Loy, A. C. M., Yusup, S., & Lee, K. T. (2019a). Chapter 9 - Biohydrogen Production From Algae. In A. Pandey, S. V. Mohan, J.-S. Chang, P. C. Hallenbeck, & C. Larroche (Eds.), Biohydrogen (Second Edition) (pp. 219–245). Elsevier.
  133. Lam, M. K., Loy, A. C. M., Yusup, S., & Lee, K. T. (2019b). Chapter 9 - Biohydrogen Production From Algae. In A. Pandey, S. V. Mohan, J.-S. Chang, P. C. Hallenbeck, & C. Larroche (Eds.), Biohydrogen (Second Edition) (pp. 219–245). Elsevier.
  134. Lee, S. Y., Sankaran, R., Chew, K. W., Tan, C. H., Krishnamoorthy, R., Chu, D.-T., & Show, P.-L. (2019). Waste to bioenergy: a review on the recent conversion technologies. BMC Energy, 1(1).
  135. Li, G., Xiao, W., Yang, T., & Lyu, T. (2023). Optimization and Process Effect for Microalgae Carbon Dioxide Fixation Technology Applications Based on Carbon Capture: A Comprehensive Review. In C-Journal of Carbon Research 9(1).
  136. Li, H., Sun, C., Zhang, Y., Li, T., & Wei, X. (2022). Performance investigation of the gasification for the kitchen waste powder in a direct current plasma reactor. Journal of the Energy Institute, 100, 170–176.
  137. Li, X., Chen, Y., & Nielsen, J. (2019). Harnessing xylose pathways for biofuels production. Current Opinion in Biotechnology, 57, 56–65.
  138. Li, X., Shi, Y., Kong, W., Wei, J., Song, W., & Wang, S. (2022). Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment—A review. Energy Reports, 8, 696–709.
  139. Lisbona, P., Pascual, S., & Pérez, V. (2023). Waste to energy: Trends and perspectives. Chemical Engineering Journal Advances, 14, 100494.
  140. Liu, C.-G., Xiao, Y., Xia, X.-X., Zhao, X.-Q., Peng, L., Srinophakun, P., & Bai, F.-W. (2019). Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances, 37(3), 491–504.
  141. López Barreiro, D., Prins, W., Ronsse, F., & Brilman, W. (2013). Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass and Bioenergy, 53, 113–127.
  142. Luo, Z., & Zhou, J. (2012). Thermal Conversion of Biomass. In W.-Y. Chen, J. Seiner, T. Suzuki, & M. Lackner (Eds.), Handbook of Climate Change Mitigation (pp. 1001–1042). Springer US.
  143. Maicas, S. (2020). The role of yeasts in fermentation processes. In Microorganisms (Vol. 8, Issue 8, pp. 1–8). MDPI AG.
  144. Malode, S. J., Prabhu, K. K., Mascarenhas, R. J., Shetti, N. P., & Aminabhavi, T. M. (2021). Recent advances and viability in biofuel production. Energy Conversion and Management: X, 10, 100070.
  145. Mariscal, R., Maireles-Torres, P., Ojeda, M., Sádaba, I., & López Granados, M. (2016). Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. In Energy and Environmental Science 9(4), 1144–1189.
  146. Masud, M. H., Rashid, M., Hossan, Md. N., & Ahmed, M. M. (2023). Domestic Waste To Energy, Technologies, Economics, and Challenges. Reference Module in Earth Systems and Environmental Sciences. Elsevier.
  147. Mata-Álvarez, J., Mace, Ş., & Llabrés, P. (2000). Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresource Technology, 74, 3–16.
  148. McIntosh, S., Nabi, M. N., Moghaddam, L., Brooks, P., Ghandehari, P. S., & Erler, D. (2021). Combined pyrolysis and sulphided NiMo/Al2O3 catalysed hydroprocessing in a multistage strategy for the production of biofuels from milk processing waste. Fuel, 295, 120602.
  149. Megonigal, J. P., Hines, M. E., & Visscher, P. T. (2014). 10.8 - Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (Second Edition) (pp. 273–359). Elsevier.
  150. Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52–61.
  151. Mohd Hanafiah, K., Abd Mutalib, A. H., Miard, P., Goh, C. S., Mohd Sah, S. A., & Ruppert, N. (2022). Impact of Malaysian palm oil on sustainable development goals: co-benefits and trade-offs across mitigation strategies. Sustainability Science, 17(4), 1639–1661.
  152. Molino, A., Chianese, S., & Musmarra, D. (2016). Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25(1), 10–25.
  153. Monceaux, D. A. (2019). Bioethanol from Starch: The US Experience. In M. Kaltschmitt (Ed.), Energy from Organic Materials (Biomass): A Volume in the Encyclopedia of Sustainability Science and Technology, Second Edition (pp. 955–996). Springer New York.
  154. Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Informacion 29, (1)..
  155. Mourshed, M., Kamal, M., Masuk, N. I., Chowdhury, S. A., & Masud, M. H. (2023). Anaerobic Digestion Process of Biomass. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.
  156. Mujtaba, M., Fernandes Fraceto, L., Fazeli, M., Mukherjee, S., Savassa, S. M., Araujo de Medeiros, G., do Espírito Santo Pereira, A., Mancini, S. D., Lipponen, J., & Vilaplana, F. (2023). Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production, 402, 136815.
  157. Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., & Bhowmik, R. (2020). A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119, 109512.
  158. Mulgund, A. (2022). Increasing lipid accumulation in microalgae through environmental manipulation, metabolic and genetic engineering: a review in the energy NEXUS framework. Energy Nexus, 5, 100054.
  159. Muscat, A., de Olde, E. M., de Boer, I. J. M., & Ripoll-Bosch, R. (2020). The battle for biomass: A systematic review of food-feed-fuel competition. Global Food Security, 25, 100330.
  160. Nandi, S., Ahmed, S., & Khurpade, P. D. (2023). Chapter 5 - Anaerobic digestion of fruit and vegetable waste for biogas and other biofuels. In S. A. Mandavgane, I. Chakravarty, & A. K. Jaiswal (Eds.), Fruit and Vegetable Waste Utilization and Sustainability (pp. 101–119). Academic Press.
  161. National Environment Agency. (2019). Combined Heat and Power Systems Professional Level Elective Module of Singapore Certified Energy Manager (SCEM) Programme Acknowledgements The reference manual Combined Heat and Power (CHP) Systems for the Professional Level elective module of the Singapore Certified Energy Manager Programme was developed for the National Environment Agency. SCEM Reference Manual for Combined Heat and Power (CHP) Systems
  162. Ngan, N. V. C., Chan, F. M. S., Nam, T. S., Van Thao, H., Maguyon-Detras, M. C., Hung, D. V., Cuong, D. M., & Van Hung, N. (2020). Anaerobic Digestion of Rice Straw for Biogas Production. In M. Gummert, N. Van Hung, P. Chivenge, & B. Douthwaite (Eds.), Sustainable Rice Straw Management (pp. 65–92). Springer International Publishing.
  163. Nunes, L. J. R., & Silva, S. (2023). Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis. Logistics, 7(3).
  164. Olatoyan, O. J., Kareem, M. A., Adebanjo, A. U., Olawale, S. O. A., & Alao, K. T. (2023). Potential use of biomass ash as a sustainable alternative for fly ash in concrete production: A review. Hybrid Advances, 4, 100076.
  165. Oni, B. A., Oziegbe, O., & Olawole, O. O. (2019). Significance of biochar application to the environment and economy. Annals of Agricultural Sciences, 64(2), 222–236.
  166. Osman, A. I., Mehta, N., Elgarahy, A. M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2021). Conversion of biomass to biofuels and life cycle assessment: a review. In Environmental Chemistry Letters ,19 (6), 4075–4118).
  167. Østergaard, P. A., Duic, N., Noorollahi, Y., & Kalogirou, S. (2023). Advances in renewable energy for sustainable development. Renewable Energy, 219, 119377.
  168. Pahnila, M., Koskela, A., Sulasalmi, P., & Fabritius, T. (2023). A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties. In Energies (Vol. 16, Issue 19). Multidisciplinary Digital Publishing Institute (MDPI).
  169. Palacio, J. C. E., Santos, J. J. C. S., Renó, M. L. G., Júnior, J. C. F., Monica Carvalho, Reyes, A. M. M., & Rúa Orozco, D. J. (2018). Municipal Solid Waste Management and Energy Recovery. In I. H. Al-Bahadly (Ed.), Energy Conversion (p. Ch. 8). IntechOpen.
  170. Pande, M., & Bhaskarwar, A. (2012). Biomass Conversion to Energy. In Biomass Conversion: The Interface of Biotechnology, Chemistry and Materials Science (pp. 1–90).
  171. Pariasamy, S. G., Venkiteswaran, V. K., Kumar, J., & Awad, M. M. (2022). Industrial CHP with Steam Systems: A Review of Recent Case Studies, Trends and Relevance to Malaysian Industry. In Energies 15(20).
  172. Patel, A., & Shah, A. R. (2021). Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. Journal of Bioresources and Bioproducts, 6(2), 108–128.
  173. Petrovič, A., Cenčič Predikaka, T., Škodič, L., Vohl, S., & Čuček, L. (2023). Hydrothermal co-carbonization of sewage sludge and whey: Enhancement of product properties and potential application in agriculture. Fuel, 350, 128807.
  174. Porosoff, M. D., Yan, B., & Chen, J. G. (2016). Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. In Energy and Environmental Science 9(1), 62–73)..
  175. Qin, L., Wang, M., Zhu, J., Wei, Y., Zhou, X., & He, Z. (2021). Towards Circular Economy through Waste to Biomass Energy in Madagascar. Complexity, 2021.
  176. Radovanović, M. (2023). Chapter 7 - Strategic priorities of sustainable energy development. In M. Radovanović (Ed.), Sustainable Energy Management (Second Edition) (pp. 181–277). Academic Press.
  177. Raheem, A., Wan Azlina, W. A. K. G., Taufiq Yap, Y. H., Danquah, M. K., & Harun, R. (2015). Thermochemical conversion of microalgal biomass for biofuel production. Renewable and Sustainable Energy Reviews, 49, 990–999.
  178. Rajendran, K., Mahapatra, D., Venkatraman, A. V., Muthuswamy, S., & Pugazhendhi, A. (2020). Advancing anaerobic digestion through two-stage processes: Current developments and future trends. Renewable and Sustainable Energy Reviews, 123, 109746.
  179. Rashidi, N. A., Chai, Y. H., & Yusup, S. (2022). Biomass Energy in Malaysia: Current Scenario, Policies, and Implementation Challenges. Bioenergy Research.15(3), 1371–1386).
  180. Ray, R., Taylor, R., & Chapman, C. (2012). The deployment of an advanced gasification technology in the treatment of household and other waste streams. Process Safety and Environmental Protection, 90(3), 213–220.
  181. Rejeb, A., Rejeb, K., & Treiblmaier, H. (2023). Mapping Metaverse Research: Identifying Future Research Areas Based on Bibliometric and Topic Modeling Techniques. Information (Switzerland), 14, (7).
  182. REN21. (2020). gsr_2020_full_report_en. RENEWABLES 2020.
  183. Rezania, S., Oryani, B., Nasrollahi, V. R., Darajeh, N., Lotfi Ghahroud, M., & Mehranzamir, K. (2023). Review on Waste-to-Energy Approaches toward a Circular Economy in Developed and Developing Countries. Processes,11(9).
  184. Ruiz, H. A., Rodríguez-Jasso, R. M., Fernandes, B. D., Vicente, A. A., & Teixeira, J. A. (2013). Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainable Energy Reviews, 21, 35–51).
  185. Sabin Guendehou G.H., Matthias Koch, Leif Hockstad, Riitta Pipatti, & Masato Yamada. (2006). INCINERATION AND OPEN BURNING OF WASTE.
  186. Sadeghi, O., Fazeli, A., Bakhtiari-Nejad, M., & Che Sidik, N. A. (2015). An Overview of Waste-to-Energy in Malaysia. In Applied Mechanics and Materials, 695.
  187. Said, Z., Sharma, P., Thi Bich Nhuong, Q., Bora, B. J., Lichtfouse, E., Khalid, H. M., Luque, R., Nguyen, X. P., & Hoang, A. T. (2023). Intelligent approaches for sustainable management and valorisation of food waste. Bioresource Technology, 377, 128952.
  188. Salami, N., & Skála, Z. (2015). Use of the steam as gasifying agent in fluidized bed gasifier. Chemical and Biochemical Engineering Quarterly, 29(1), 13–18.
  189. Saleem, M. (2022). Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, 8(2), e08905.
  190. Salleh, S. F., Mohd Roslan, M. E., Abd Rahman, A., Shamsuddin, A. H., Tuan Abdullah, T. A. R., & Sovacool, B. K. (2020). Transitioning to a sustainable development framework for bioenergy in Malaysia: policy suggestions to catalyse the utilisation of palm oil mill residues. In Energy, Sustainability and Society, 10(1). BioMed Central Ltd.
  191. Samir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. In npj Materials Degradation 6 (1). Nature Publishing Group.
  192. Sankaran, R., Show, P. L., Nagarajan, D., & Chang, J.-S. (2018). Chapter 19 - Exploitation and Biorefinery of Microalgae. In T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, & S. K. Khanal (Eds.), Waste Biorefinery (pp. 571–601). Elsevier.
  193. Sara Budinis, Mathilde Fajardy, & Carl Greenfield. (2023, July 11). Carbon Capture, Utilisation and Storage.
  194. Sara Tanigawa. (2017). Biogas: Converting Waste to Energy.
  195. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27.
  196. Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. H., Alhajeri, N. S., & Rooney, D. W. (2022). Algal biomass valorization for biofuel production and carbon sequestration: a review. In Environmental Chemistry Letters (Vol. 20, Issue 5, pp. 2797–2851). Springer Science and Business Media Deutschland GmbH.
  197. Schwartz, N. R., Paulsen, A. D., Blaise, M. J., Wagner, A. L., & Yelvington, P. E. (2020). Analysis of emissions from combusting pyrolysis products. Fuel, 274, 117863.
  198. Seboka, A. D., Ewunie, G. A., Morken, J., Feng, L., & Adaramola, M. S. (2023). Potentials and prospects of solid biowaste resources for biofuel production in Ethiopia: a systematic review of the evidence. In Biomass Conversion and Biorefinery. Springer Science and Business Media Deutschland GmbH.
  199. Serfass, P. (2018). Biogas as a Waste Management Solution Turning “Waste” into Resources.
  200. Shadle, L. J., Indrawan, N., Breault, R. W., & Bennett, J. (2020). Gasification Technology. In M. Lackner, B. Sajjadi, & W.-Y. Chen (Eds.), Handbook of Climate Change Mitigation and Adaptation (pp. 1–90). Springer New York.
  201. Sharew, S., Montastruc, L., Yimam, A., Negny, S., & Ferrasse, J.-H. (2022). Alternative Energy Potential and Conversion Efficiency of Biomass into Target Biofuels: A Case Study in Ethiopian Sugar Industry- Wonji-Shoa. Biomass, 2(4), 279–298.
  202. Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. In Fermentation, 6, (4)..
  203. Sheldon, R. A. (2018). Metrics of Green Chemistry and Sustainability: Past, Present, and Future. In ACS Sustainable Chemistry and Engineering 6(1), 32–48)..
  204. Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., & Fennell, P. S. (2016). An overview of advances in biomass gasification. In Energy and Environmental Science 9(10), 2939–2977).
  205. Sikarwar, V. S., Zhao, M., Fennell, P. S., Shah, N., & Anthony, E. J. (2017). Progress in biofuel production from gasification. Progress in Energy and Combustion Science, 61, 189–248.
  206. Silva, F. T. M., Bessa, L. P., Vieira, L. M., Moreira, F. S., de Souza Ferreira, J., Batista, F. R. X., & Cardoso, V. L. (2019). Dark fermentation effluent as substrate for hydrogen production from Rhodobacter capsulatus highlighting the performance of different fermentation systems. 3 Biotech, 9(4).
  207. Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., & Awasthi, M. K. (2019). Chapter 5 - Biofuel Production From Biomass: Toward Sustainable Development. In S. Kumar, R. Kumar, & A. Pandey (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 79–92).
  208. Singh, A. K., Pal, P., Rathore, S. S., Sahoo, U. K., Sarangi, P. K., Prus, P., & Dziekański, P. (2023). Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements. Energies, 16(14).
  209. Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. In Bioresource Technology, 127, 500–507.
  210. Son, Y.-S., Jeon, J.-M., Kim, D.-H., Yang, Y.-H., Jin, Y.-S., Cho, B.-K., Kim, S.-H., Kumar, S., Lee, B.-D., & Yoon, J.-J. (2021). Improved bio-hydrogen production by overexpression of glucose-6-phosphate dehydrogenase and FeFe hydrogenase in Clostridium acetobutylicum. International Journal of Hydrogen Energy, 46(74), 36687–36695.
  211. Speirs, J., McGlade, C., & Slade, R. (2015). Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass. Energy Policy, 87, 654–664.
  212. Strielkowski, W., Civín, L., Tarkhanova, E., Tvaronavičienė, M., & Petrenko, Y. (2021). Renewable energy in the sustainable development of electrical power sector: A review. Energies, 14(24).
  213. Su, H., Cheng, J., Zhou, J., Song, W., & Cen, K. (2009). Combination of dark- and photo-fermentation to enhance hydrogen production and energy conversion efficiency. International Journal of Hydrogen Energy, 34, 8846–8853.
  214. Subramanian, A. S. R., Gundersen, T., Barton, P. I., & Adams, T. A. (2022). Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system. Energy, 250, 123722.
  215. Suresh, A., Kumar, P., Kumar, N., & Siddarth, N. (2020). Conversion of green algal biomass into bioenergy by pyrolysis. A review. Environmental Chemistry Letters, 18.
  216. Sütterlin, B., & Siegrist, M. (2017). Public acceptance of renewable energy technologies from an abstract versus concrete perspective and the positive imagery of solar power. Energy Policy, 106, 356–366.
  217. Tamošiūnas, A., Gimžauskaitė, D., Aikas, M., Uscila, R., Snapkauskienė, V., Zakarauskas, K., & Praspaliauskas, M. (2023). Biomass gasification to syngas in thermal water vapor arc discharge plasma. Biomass Conversion and Biorefinery, 13(18), 16373–16384.
  218. Tan, K. M., Babu, T. S., Ramachandaramurthy, V. K., Kasinathan, P., Solanki, S. G., & Raveendran, S. K. (2021). Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. Journal of Energy Storage, 39, 102591.
  219. Tarafdar, A., G., S., K., Y., Rattu, G., Negi, T., Awasthi, M. K., Hoang, A., & Sirohi, R. (2023). Environmental pollution mitigation through utilization of carbon dioxide by microalgae. Environmental Pollution, 328.
  220. Traven, L. (2023). Sustainable energy generation from municipal solid waste: A brief overview of existing technologies. Case Studies in Chemical and Environmental Engineering, 8, 100491.
  221. Tse, T. J., Wiens, D. J., & Reaney, M. J. T. (2021). Production of bioethanol—a review of factors affecting ethanol yield. In Fermentation 7(4).
  222. Tshikovhi, A., & Motaung, T. E. (2023). Technologies and Innovations for Biomass Energy Production. In Sustainability (Switzerland), 15(16).
  223. Tshikovhi, A., & Tshwafo, M. (2023). Technologies and Innovations for Biomass Energy Production. Sustainability, 15, 12121.
  224. Tsigkou, K., Zagklis, D., Parasoglou, M., Zafiri, C., & Kornaros, M. (2022). Proposed protocol for rate-limiting step determination during anaerobic digestion of complex substrates. Bioresource Technology, 361, 127660.
  225. Tsui, T.-H., & Wong, J. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy, 1.
  226. Tullu, M. (2019). Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key. In Saudi Journal of Anaesthesia 13(5), S12–S17). Wolters Kluwer Medknow Publications.
  227. Tumuluru, J. S., Ghiasi, B., Soelberg, N. R., & Sokhansanj, S. (2021). Biomass Torrefaction Process, Product Properties, Reactor Types, and Moving Bed Reactor Design Concepts. Frontiers in Energy Research, 9.
  228. Tursi, A. (2019). A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal (Vol. 6(2), 962–979)..
  229. Udayan, A., Pandey, A. K., Sirohi, R., Sreekumar, N., Sang, B. I., Sim, S. J., Kim, S. H., & Pandey, A. (2023). Production of microalgae with high lipid content and their potential as sources of nutraceuticals. In Phytochemistry Reviews, 22(4), 833–860).
  230. Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances. 8(9), 2819–2837. 10.1515/psr-2021-0068
  231. Urrutia, R. I., Gutierrez, V. S., Stefanazzi, N., Volpe, M. A., & Werdin González, J. O. (2022). Pyrolysis liquids from lignocellulosic biomass as a potential tool for insect pest management: A comprehensive review. Industrial Crops and Products 177).
  232. Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. In Bioengineered,10(1), 437–458).
  233. Wang, Z., Hu, Y., Wang, S., Wu, G., & Zhan, X. (2023). A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies. Renewable and Sustainable Energy Reviews, 176, 113208.
  234. Werkneh, A. A. (2022a). Biogas impurities: environmental and health implications, removal technologies and future perspectives. In Heliyon, 8, (10).
  235. Werkneh, A. A. (2022b). Biogas impurities: environmental and health implications, removal technologies and future perspectives. Heliyon, 8(10), e10929.
  236. Wienchol, P., Szlęk, A., & Ditaranto, M. (2020). Waste-to-energy technology integrated with carbon capture – Challenges and opportunities. Energy, 198, 117352.
  237. Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., & Li, C. (2016). Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Research 9(1), 1–14.
  238. Xue, C., & Cheng, C. (2019). Chapter Two - Butanol production by Clostridium. In Y. Li & X. Ge (Eds.), Advances in Bioenergy, 4, 35–77,
  239. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570.
  240. Yamakawa, C. K., Qin, F., & Mussatto, S. I. (2018). Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass and Bioenergy, 119, 54–60.
  241. Yansaneh, O. Y., & Zein, S. H. (2022). Recent Advances on Waste Plastic Thermal Pyrolysis: A Critical Overview. Processes 10(2)..
  242. Ye, B., Zhang, R., Cao, J., Lei, K., & Liu, D. (2020). The study of co-combustion characteristics of coal and microalgae by single particle combustion and TGA methods. Journal of the Energy Institute, 93(2), 508–517.
  243. Yong, Z. J., Bashir, M. J. K., Ng, C. A., Sethupathi, S., Lim, J. W., & Show, P. L. (2019). Sustainable waste-to-energy development in Malaysia: Appraisal of environmental, financial, and public issues related with energy recovery from municipal solid waste. Processes 7(10).
  244. Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301.
  245. Youcai, Z., & Tao, Z. (2021). Chapter 5 - Combined anaerobic fermentation biohydrogen and biomethane production for sewage sludge and food waste. In Z. Youcai & Z. Tao (Eds.), Biohydrogen Production and Hybrid Process Development (pp. 311–444). Elsevier.
  246. Yu, I. K. M., & Tsang, D. C. W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresource Technology, 238, 716–732.
  247. Zaman, C. Z., Pal, K., Yehye, W. A., Sagadevan, S., Shah, S. T., Adebisi, G. A., Marliana, E., Rafique, R. F., & Johan, R. Bin. (2017). Pyrolysis: A Sustainable Way to Generate Energy from Waste. In Pyrolysis. InTech.
  248. Zamri, M. F. M. A., Milano, J., Shamsuddin, A. H., Roslan, M. E. M., Salleh, S. F., Rahman, A. A., Bahru, R., Fattah, I. M. R., & Mahlia, T. M. I. (2022). An overview of palm oil biomass for power generation sector decarbonization in Malaysia: Progress, challenges, and prospects. Wiley Interdisciplinary Reviews: Energy and Environment, 11(4).
  249. Zeng, Y., & Han, X. (2023). Co-Processing Biomass With Fossil Fuels. In Reference Module in Earth Systems and Environmental Sciences. Elsevier.
  250. Zeng, Y., Zhao, S., Yang, S., & Ding, S. Y. (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. In Current Opinion in Biotechnology, 27, 98–45.
  251. Zhang, K., Pei, Z., & Wang, D. (2016). Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 199, 21–33.
  252. Zhao, H. (2022). Chapter 18 - Biomass burning emission and impacts on air pollution in China. In R. P. Singh (Ed.), Asian Atmospheric Pollution (pp. 335–347).
  253. Zhou, C., Chen, L., Liu, C., Wang, J., Xing, X., Liu, Y., Chen, Y., Chao, L., Dai, J., Zhang, Y., Yu, M., Yuan, Y., Yao, B., & Li, Y. (2022). Interconnected pyrolysis and gasification of typical biomass in a novel dual fluidized bed. Energy Conversion and Management, 271, 116323.
  254. Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A., Simal-Gandara, J., Cao, H., Xiao, J., & Barba, F. J. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry, 384, 132236.
  255. Zikhathile, T., Atagana, H., Bwapwa, J., & Sawtell, D. (2022). A Review of the Impact That Healthcare Risk Waste Treatment Technologies Have on the Environment. In International Journal of Environmental Research and Public Health19, (19).

Last update:

No citation recorded.

Last update: 2024-07-16 04:58:47

No citation recorded.