skip to main content

Evaluating the performance of the Anwaralardh photovoltaic power generation plant in Jordan: Comparative analysis using artificial neural networks and multiple linear regression modeling

1Mechanical Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an, Jordan

2Mining & Minerals Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an, Jordan

3School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia

4 Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia

5 Environmental Engineering Department, Faculty of Engineering, Al-Hussein Bin Talal University, Ma'an, Jordan

View all affiliations
Received: 11 Feb 2024; Revised: 5 Apr 2024; Accepted: 25 Apr 2024; Available online: 1 May 2024; Published: 1 Jul 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The global energy demand is rising, driven by population growth, economic development, and industrialization. Shifting towards renewable energy, like solar energy, is gaining momentum worldwide because of ecological concerns and resource depletion. This paper aims to utilize Artificial Neural Networks (ANNs) and multiple linear regression (MLR) modeling techniques to evaluate the productivity of 11 MW photovoltaic (PV) solar power plant currently operational in Jordan. The case study reveals that both models can be used to predict the daily, monthly, and yearly average power produced and system efficiency with reasonable accuracy. The ANN model exhibited promising results, where the best value for the coefficient of determination (R2) and mean absolute percentage error (MAPE) for training were 95.85% and 0.59%, respectively. However, R2 was 93.7%, and MAPE was 1.27% for validation tests. All these results were achieved using a 7-6-1 model, with a sample ratio of 1:1 for the data allocated in training and validation. When using multiple linear regression, the R2 and standard error values were 93.42% and 0.17%. On the other hand, the results showed that the yearly output power for actual and predicted by both models over the year was 24,399 MWh, 24,538 MWh, and 24,401 MWh, respectively. This research showed valuable results in the monthly output power for solar cells at the Anwaralardh PV power system project, contributing to a better understanding of solar energy generation in arid desert climates and emphasizing the potential of solar power plants to play a crucial role in achieving SDG 7 objectives.
Fulltext View|Download
Keywords: Artificial Neural Networks; photovoltaic solar power plant; multiple linear regression; solar energy

Article Metrics:

  1. Abdallah, S., Nijmeh, S. (2004). Two axes sun tracking system with PLC control. Energy Conversion and Management, 45 (11-12), 1931-1939. https://doi.org/10.1016/j.enconman.2003.10.007
  2. Adaramola, M. S., Paul, S. S. & Oyewola, O. M. (2014). Assessment of decentralized hybrid PV solar-diesel power system for applications in Northern part of Nigeria. Energy for Sustainable Development, 19, 72-82; https://doi.org/10.1016/j.esd.2013.12.007
  3. Ahmad, E. Z., Jarimi, H., & Razak, T. R. (2022). Artificial Neural Network Prediction Model of Dust Effect on Photovoltaic Performance for Residential applications: Malaysia Case Study. International Journal of Renewable Energy Development, 11(2), 365-373. https://doi.org/10.14710/ijred.2022.42195
  4. Ahmed, R., Sreeram, V., Mishra, Y., Arif, M. J. R. & Reviews, S. E. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, 109792. https://doi.org/10.1016/j.rser.2020.109792
  5. Al Naimat, A. & Liang, D. (2023). Substantial gains of renewable energy adoption and implementation in Maan, Jordan: A critical review. Results in Engineering 101367. https://doi.org/10.1016/j.rineng.2023.101367
  6. Albaali, A. G., Shahateet, M. (2022). Energy Applications in Green Building to Fulfil the Goals of Sustainable Development: The Case of Jordan. International Journal of Energy Economics and Policy, 12 (6), 188-193. https://doi: 10.32479/ijeep.13547
  7. Ali, T., Ma, H. & Nahian, A. J. (2019). An analysis of the renewable energy technology selection in the southern region of Bangladesh using a hybrid multi-criteria decision making (MCDM) method. International Journal of Renewable Energy Research-IJRER, 9, 1838-1848
  8. Alshafeey, M. & Csaba, C. (2019, August). A case study of grid-connected solar farm control using artificial intelligence genetic algorithm to accommodate peak demand In Journal of Physics: Conference Series, 1304 (1), p. 012017). https://doi.org/10.1088/1742-6596/1304/1/012017
  9. Altan, A. D., Diken, B. & Kayişoğlu, B. (2021). Prediction of Photovoltaic Panel Power Outputs Using Time Series and Artificial Neural Network Methods. Journal of Tekirdag Agricultural Faculty 18 (3), 457-469. https://doi.org/10.33462/jotaf.837446
  10. Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-De-Pison, F. J. & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78-111. http://dx.doi.org/10.1016/j.solener.2016.06.069
  11. Anwaralardh, (2023), Anwaralardh company website, https://anwaralardh.com/ [Online]. [Accessed on 2-12-2023]
  12. Baccelli, G., Stathis, D., Hemani, A. & Martina, M. (2020). a non-linear arithmetic unit for neural networks. ACM/IEEE Design Automation Conference (DAC), 2020. IEEE, 1-6
  13. Bre, F., Gimenez, J. M., Fachinotti, V. D (2018). Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings, 158, 1429-1441. https://doi.org/10.1016/j.enbuild.2017.11.045
  14. Cavalcante, R. L., Costa, T. O., Almeida, M. P., Williamson, S., Galhardo, M. A. B., Macêdo, W. N. (2021). Photovoltaic penetration in isolated thermoelectric power plants in Brazil: Power regulation and specific consumption aspects. International Journal of Electrical Power & Energy Systems, 129, 106648. https://doi.org/10.1016/j.ijepes.2020.106648
  15. Choden, Y., Chokden, S., Rabten, T., Chhetri, N., Aryan, K., Al Abdouli, K., (2022). Performance assessment of data driven water models using water quality parameters of Wangchu river, Bhutan. SN Appl. Sci. 4, 290. https://doi.org/10.1007/s42452-022-05181-y
  16. Devaraj, J., Madurai Elavarasan, R., Shafiullah, G., Jamal, T. & Khan, I. (2021). A holistic review on energy forecasting using big data and deep learning models. International Journal of Energy Research, 45 (9), 13489-13530. https://doi.org/10.1002/er.6679
  17. Duffie, J. A., Beckman, W. A. & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind, John Wiley & Sons
  18. El-Aal, S. A., Alqabli, M. A., Naim, A. A. (2023). Forecasting solar photovoltaic energy production using linear regression-based techniques. Journal of Theoretical and Applied Information Technology, 101(9), http://www.jatit.org/volumes/Vol101No9/9Vol101No9.pdf
  19. Elsheikh, A. H., Sharshir, S. W., Abd Elaziz, M., Kabeel, A. E., Guilan, W. & Haiou, Z. (2019). Modeling of solar energy systems using artificial neural network: A comprehensive review. Solar Energy, 180, 622-639. https://doi.org/10.1016/j.solener.2019.01.037
  20. Erten, M. Y., Aydilek, H. J. (2022). Solar Power Prediction using Regression Models. International Journal of Engineering Research and Development, 14 (3), 333-342. https://doi.org/10.29137/umagd.1100957
  21. Freedman, D. A. (2009). Statistical models: theory and practice, cambridge university press
  22. Fu, X., Wang, X., Gong, Y., Wang, Y. & Zhang, Y. (2023). Impact of Snow Weather on PV Power Generation and Improvement of Power Forecasting. 2023 International Conference on Power Energy Systems and Applications (ICoPESA), 2023. IEEE, 448-453. https://doi: 10.1109/ICoPESA56898.2023.10140199
  23. Kalogirou, S. (2007). Artificial intelligence in energy and renewable energy systems, Nova Publishers
  24. Kartikasari, F. D., Tarigan, E., Irawati, F., Louk, M. H. L., Limanto, S., Asmawati, E. (2023). Optimal solar panel tilt angle calculation and simulation in Indonesia: A Liu and Jordan sky isotropic model-based approach. International Journal of Science and Research Archive, 9 (2), 116-121. https://doi.org/10.30574/ijsra.2023.9.2.0517
  25. Keddouda, A., Ihaddadene, R., Boukhari, A., Atia, A., Arıcı, M., Lebbihiat, N., & Ihaddadene, N. (2023). Solar photovoltaic power prediction using artificial neural network and multiple regression considering ambient and operating conditions. Energy Conversion and Management, 288, 117186. https://doi.org/10.1016/j.enconman.2023.117186
  26. Koeppe, A., Bamer, F., Selzer, M., Nestler, B. & Markert, B. (2021). Explainable artificial intelligence for mechanics: physics-informing neural networks for constitutive models. Front. Mater. 8:824958. https://doi.org/10.48550/arXiv.2104.10683
  27. Kumar, K. R. & Kalavathi, M. S. (2018). Artificial intelligence based forecast models for predicting solar power generation. Materials Today: Proceedings. 5 (1), 796-802. https://doi.org/10.1016/j.matpr.2017.11.149
  28. Kumar, N., Sharma, S. P., Sinha, U. K. & Nayak, Y. K. J. I. (2016). Prediction of solar energy based on intelligent ANN modeling. International Journal of Renewable Energy Research, 6 (1), 183-188. https://doi.org/10.20508/ijrer.v6i1.3307.g6773
  29. Leva, S., Dolara, A., Grimaccia, F., Mussetta, M., Ogliari, E. J. M. & Simulation, C. (2017). Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power. Mathematics and Computers in Simulation, 131, 88-100. http://dx.doi.org/10.1016/j.matcom.2015.05.010
  30. Li, G., Xie, S., Wang, B., Xin, J., Li, Y. & Du, S. (2020). Photovoltaic power forecasting with a hybrid deep learning approach. IEEE access, 8, 175871-175880. https://doi: 10.1109/ACCESS.2020.3025860
  31. Limouni, T., Yaagoubi, R., Bouziane, K., Guissi, K., & Baali, E. H. (2022). Univariate and Multivariate LSTM Models for One Step and Multistep PV Power Forecasting. International Journal of Renewable Energy Development, 11(3), 815-828. https://doi.org/10.14710/ijred.2022.43953
  32. Loutfi, H., Bernatchou, A. & Tadili, R. (2017). Generation of horizontal hourly global solar radiation from exogenous variables using an artificial neural network in Fes (Morocco). International Journal of Renewable Energy Research, 7 (3), 11. https://doi.org/10.20508/ijrer.v7i3.5852.g7140
  33. Mellit, A. & Pavan, A. M. J. S. E. (2010). A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy, 84 (5), 807-821. https://dx.doi.org/10.1016/j.solener.2010.02.006
  34. Montgomery, D. C., Peck, E. A. & Vining, G. (2021). Introduction to linear regression analysis, John Wiley & Sons
  35. Natsheh, E. & Samara, S. (2019). Toward Better PV Panel’s Output Power Prediction; a Module Based on Nonlinear Autoregressive Neural Network with Exogenous Inputs. Applied Sciences, 9 (18), 3670. https://doi.org/10.3390/app9183670
  36. Neville, R. C. (1978). Solar energy collector orientation and tracking mode. Solar Energy, 20 (1), 7-11. https://doi.org/10.1016/0038-092X(78)90134-2
  37. Nitisanon, S., & Hoonchareon, N. (2017, July). Solar power forecast with weather classification using self-organized map. In 2017 IEEE power & energy society general meeting (pp. 1-5). IEEE.‏ https://doi.org/10.1109/PESGM.2017.8274548
  38. Tsai, W.-C., Et Al., A Review Of State-Ofnespoli, A., Ogliari, E., Dolara, A., Grimaccia, F., Leva, S., & Mussetta, M. (2018, July). Validation of ANN training approaches for day-ahead photovoltaic forecasts. In 2018 International Joint Conference on Neural Networks (IJCNN) (pp.1-6). IEEE. https://doi.org/10.1109/IJCNN.2018.8489451
  39. Poon, K. H. & Kaempf, J. (2019, November). A morphological based PV generation and energy consumption predictive model for Singapore neighbourhood. Journal of Physics: Conference Series, 2019. IOP Publishing, 012033. https://doi.org/10.1088/1742-6596/1343/1/012033
  40. Rajput, G., Raut, G., Chandra, M., Vishvakarma, S. (2021). VLSI implementation of transcendental function hyperbolic tangent for deep neural network accelerators. Microprocessors and Microsystems, 84, 104270. https://doi.org/10.1016/j.micpro.2021.104270
  41. Rao, D. V. S. K. K., Prusty, B. R., & Myneni, H. (2022, July). Bright Sunshine Duration Index-Based Prediction of Solar PV Power Using ANN Approach. In 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP) (pp. 1-5). IEEE.‏ https://doi.org/10.1109/ICICCSP53532.2022.9862452
  42. Rasamoelina, A. D. , Adjailia, F. and Sinčák,P. (2020) A Review of Activation Function for Artificial Neural Network, 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 2020, pp. 281-286, doi: https://doi.org/10.1109/SAMI48414.2020.9108717
  43. Reyes-Téllez, E., Parrales, A., Ramírez-Ramos, G., Hernández, J., Urquiza, G., Heredia, M. & Sierra, F. (2020). Analysis of transfer functions and normalizations in an ANN model that predicts the transport of energy in a parabolic trough solar collector. Desalination and Water Treatment, 200, 23-41. https://doi.org/10.5004/dwt.2020.26063
  44. Rumbayan, M., Abudureyimu, A., & Nagasaka, K. (2012). Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system. Renewable and Sustainable Energy Reviews, 16(3), 1437-1449.‏ https://doi.org/10.1016/j.rser.2011.11.024
  45. Shafiee, S. & Topal, E., (2009). When will fossil fuel reserves be diminished? Energy Policy, 37 (1), 181-189; https://doi.org/10.1016/j.enpol.2008.08.016
  46. Shehab, M., Abualigah, L., Omari, M., Shambour, M. K. Y., Alshinwan, M., Abuaddous, H. Y., & Khasawneh, A. M. (2022). Artificial neural networks for engineering applications: A review. Artificial Neural Networks for Renewable Energy Systems and Real-World Applications, 189-206.‏ https://doi.org/10.1016/B978-0-12-820793-2.00003-3
  47. Thombare, S., Pande, V., Kulkarni, R. & Kakade, S. (2022). Prediction of Solar Power Using Linear Regression. Sustainable Energy and Technological Advancements: Proceedings of ISSETA 2021. Springer. https://doi.org/10.1007/978-981-16-9033-4_53
  48. Tsai, W.-C., Tu, C.-S., Hong, C.-M. & Lin, W.-M. (2023). A Review of State-of-the-art and Short-Term Forecasting Models for Solar PV Power Generation. Energies, 16(14), 5436; https://doi.org/10.3390/en16145436
  49. Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of Clinical Epidemiology , 49 (11), 1225-1231. https://doi.org/10.1016/S0895-4356(96)00002-9
  50. Yadav, O., Kannan, R., Meraj, S. T. & Masaoud, A. (2022). Machine Learning Based Prediction of Output PV Power in India and Malaysia with the Use of Statistical Regression. Mathematical Problems in Engineering, 2022, Article ID 5680635. https://doi.org/10.1155/2022/5680635

Last update:

No citation recorded.

Last update: 2025-03-27 05:33:46

No citation recorded.