Department of Geography, Faculty of Arts and Sciences, Izmir Bakırçay University, Turkey
BibTex Citation Data :
@article{IJRED60167, author = {Mehmet Şener}, title = {Current status and potentials of enhanced geothermal system in the Eastern Pontide Orogenic Belt, Turkey}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {3}, year = {2024}, keywords = {Geothermal Energy; Radiogenic Granites; EGS; Eastern Pontide Orogenic Belt; Turkey}, abstract = { The radioactive decay of isotopes is one of the most important sources of heat in the Earth's interior. The main radiogenic elements in the crust are U, Th, and K in granitoids. Radiogenic granites are becoming increasingly important as they support the development of the renewable energy sector. This study provides an in-depth review of the development of Enhanced Geothermal Systems (EGS) technology. Many countries, such as France and the UK, have initiated and contributed to energy production using EGS technology. In addition, this study calculates the potential production capacity of radiogenic granites in the Eastern Pontide Oraganic Belt (EPOB) and assesses their significant contribution to the Turkish economy in line with the Sustainable Development Goals (SDGs). The total area of radiogenic granites within the EBOP is 7116.35 km2 and these granites contain average concentrations of U 3.25 ppm, Th 16.44 ppm, and K 3.7%. The plutons studied can generally be classified as medium to low heat producing granitoids. Ayeser, Camiboğazı, and Ayder (3.36-6.98 µW/m3), which are close to the average heat production value of the continental crust (5 μW/m3), may be suitable areas for EGS. Currently, EBOP granites have the capacity to produce 61 x 109 kWh of electricity. In addition to electricity, heat from granites can be used for other applications such as space heating and greenhouse cultivation. }, pages = {521--531} doi = {10.61435/ijred.2024.60167}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60167} }
Refworks Citation Data :
The radioactive decay of isotopes is one of the most important sources of heat in the Earth's interior. The main radiogenic elements in the crust are U, Th, and K in granitoids. Radiogenic granites are becoming increasingly important as they support the development of the renewable energy sector. This study provides an in-depth review of the development of Enhanced Geothermal Systems (EGS) technology. Many countries, such as France and the UK, have initiated and contributed to energy production using EGS technology. In addition, this study calculates the potential production capacity of radiogenic granites in the Eastern Pontide Oraganic Belt (EPOB) and assesses their significant contribution to the Turkish economy in line with the Sustainable Development Goals (SDGs). The total area of radiogenic granites within the EBOP is 7116.35 km2 and these granites contain average concentrations of U 3.25 ppm, Th 16.44 ppm, and K 3.7%. The plutons studied can generally be classified as medium to low heat producing granitoids. Ayeser, Camiboğazı, and Ayder (3.36-6.98 µW/m3), which are close to the average heat production value of the continental crust (5 μW/m3), may be suitable areas for EGS. Currently, EBOP granites have the capacity to produce 61 x 109 kWh of electricity. In addition to electricity, heat from granites can be used for other applications such as space heating and greenhouse cultivation.
Article Metrics:
Last update:
Last update: 2024-10-03 23:08:16
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.