skip to main content

Current status and potentials of enhanced geothermal system in the Eastern Pontide Orogenic Belt, Turkey

Department of Geography, Faculty of Arts and Sciences, Izmir Bakırçay University, Turkey

Received: 28 Feb 2024; Revised: 24 Mar 2024; Accepted: 16 Apr 2024; Available online: 19 Apr 2024; Published: 1 May 2024.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The radioactive decay of isotopes is one of the most important sources of heat in the Earth's interior. The main radiogenic elements in the crust are U, Th, and K in granitoids. Radiogenic granites are becoming increasingly important as they support the development of the renewable energy sector. This study provides an in-depth review of the development of Enhanced Geothermal Systems (EGS) technology. Many countries, such as France and the UK, have initiated and contributed to energy production using EGS technology. In addition, this study calculates the potential production capacity of radiogenic granites in the Eastern Pontide Oraganic Belt (EPOB) and assesses their significant contribution to the Turkish economy in line with the Sustainable Development Goals (SDGs). The total area of radiogenic granites within the EBOP is 7116.35 km2 and these granites contain average concentrations of U 3.25 ppm, Th 16.44 ppm, and K 3.7%. The plutons studied can generally be classified as medium to low heat producing granitoids. Ayeser, Camiboğazı, and Ayder (3.36-6.98 µW/m3), which are close to the average heat production value of the continental crust (5 μW/m3), may be suitable areas for EGS. Currently, EBOP granites have the capacity to produce 61 x 109 kWh of electricity. In addition to electricity, heat from granites can be used for other applications such as space heating and greenhouse cultivation.

Fulltext View|Download
Keywords: Geothermal Energy; Radiogenic Granites; EGS; Eastern Pontide Orogenic Belt; Turkey

Article Metrics:

  1. Adamia, S.A., Chkhotua, T., Kekelia, M., Lordkipanidze, M., Shavishvili, I., Zakariadze, G. (1981). Tectonics of the Caucasus and adjoining regions: implications for the evolution of the Tethys ocean. Journal of Structural Geology, 3(4), 437-447. https://doi.org/10.1016/0191-8141(81)90043-2
  2. Arevalo Jr, R., McDonough, W.F., Luong, M. (2009). The K/U ratio of the silicate Earth: Insights into mantle composition, structure, and thermal evolution. Earth and Planetary Science Letters, 278(3-4), 361-369. https://doi.org/10.1016/j.epsl.2008.12.023
  3. Arslan, M., Aslan, Z. (2006). Mineralogy, petrography, and whole-rock geochemistry of the Cenozoic granitic intrusions in the Eastern Pontides (Turkey). Journal of Asian Earth Sciences, 27, 177-193. https://doi.org/10.1016/j.jseaes.2005.03.002
  4. Arslan, M., Temizel, I., Abdioğlu, E., Kolaylı, H., Yücel, C., Boztuğ, D., Şen, C. (2013). 40 Ar–39 Ar dating, whole-rock, and Sr–Nd–Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): implications for magma evolution in extension-induced origin. Contributions to Mineralogy and Petrology, 166, 113-142. https://doi.org/10.1007/s00410-013-0868-3
  5. Arslan, M., Temizel, İ., Temizel, E. H. (2023). Temporal and spatial radiogenic heat production rate of granitic plutons from the Eastern Pontides Orogenic Belt, NE Turkey: Constraints for the geothermal resources. Journal of Asian Earth Sciences: X, 10, 100162. https://doi.org/10.1016/j.jaesx.2023.100162·
  6. Aydınçakır, E., Şen, C. (2013). Petrogenesis of the post-collisional volcanic rocks from the Borçka (Artvin) area: implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos, 172, 98-117. https://doi.org/10.1016/j.lithos.2013.04.007
  7. Aydınçakırr, E. (2014). The Petrogenesis of Early Eocene Non-adakitic 108 Volcanism in NE Turkey: Constraints on the Geodynamic Implications, Lithos, 208/209, 361-377. https://doi.org/10.1016/j.lithos.2014.08.019
  8. Aydınçakır, E. (2016). Subduction-related Late Cretaceous high-K volcanism in the Central Pontides orogenic belt: Constraints on geodynamic implications. Geodinamica Acta, 28(4), 379-411. https://doi.org/10.1080/09853111.2016.1208526
  9. Baba, A., Chandrasekharam, D. (2022). Geothermal resources for sustainable development: A case study. International Journal of Energy Resources 46, 20501–20518. https://doi.org/10.1002/er.7778
  10. Baumgartner, J., Lyman, M.P., and Andre, G. 1995. Drilling of hot and fractured granite at Soultz sous Forets (France). Proceedings, World Geothermal Congress, 1995, Florence, Italy, Vol 4
  11. Bayramoğlu, T. (2018). Yenilenebilir Enerji Potansiyeli ve Etkileri: Bayburt Örneği. İşletme Ekonomi ve Yönetim Araştırmaları Dergisi, 1(1), 1-16
  12. Bektaş, O., Şen, C., Atici, Y., Köprübaşi, N. (1999). Migration of the Upper Cretaceous subduction‐related volcanism towards the back‐arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34(1‐2), 95-106. https://doi.org/10.1002/(SICI)1099-1034(199901/06)34:1/2<95::AID-GJ816>3.0.CO;2
  13. Bektaş, Ö., Ravat, D., Büyüksaraç, A., Bilim, F., Ateş, A. (2007). Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics, 164, 975-998. https://doi.org/10.1007/s00024-007-0196-5
  14. Boztuğ, D., Jonckheere, R.c., Wagner, G.A., Yeğingil, Z. (2004). Slow Senonian and fast Paleocene-Early Eocene uplift of the granitoids in the Central Eastern Pontides, Turkey: apatite fission-track results. Tectonophysics, 382, 213-228. https://doi.org/10.1016/j.tecto.2004.01.001
  15. Boztuğ, D., Erçin, A.İ., Kuruçelik, M.K., Göç, D., Kömür, İ., İskenderoğlu, A. (2006). Geochemical characteristics of the composite Kaçkar batholith generated in a Neo-Tethyan convergence system, Eastern Pontides, Turkey. Journal of Asian Earth Sciences, 27(3), 286-302. https://doi.org/10.1016/j.jseaes.2005.03.008
  16. Boztuğ, D., Jonckheere, R., Wagner, G.A., Erçin, A.I. and Yeğingil, Z. (2007). Titanite and zircon fission-track dating resolve successive igneous episodes in the formation of the composite Kaçkar batholith in the Turkish Eastern Pontides. International Journal of Earth Sciences, 96, 875-886. https://doi.org/10.1007/s00531-006-0140-4
  17. Breede K, Dzebisashvili K, Liu X, Falcone G. (2013). A systematic review of enhanced (or engineered) geothermal systems: past, present and future. Geotherm Energy. (1): 4. https://doi.org/10.1186/2195-9706-1-4
  18. Brown, C. S. (2022). Regional geothermal resource assessment of hot dry rocks in Northern England using 3D geological and thermal models. Geothermics, 105, 102503. https://doi.org/10.1016/j.geothermics.2022.102503
  19. Chandrasekharam, D., Baba, A. (2021). High heat generating granites of Kestanbol: future enhanced geothermal system (EGS) province in western Anatolia. Turkish Journal of Earth Sciences, 30(9), 1032-1044. https://doi.org/10.3906/yer-2106-16
  20. Chandrasekharam, D., Baba, A., Ayzit, T., & Singh, H. K. (2022). Geothermal potential of granites: case study-Kaymaz and Sivrihisar (Eskisehir region) Western Anatolia. Renewable Energy, 196, 870-882. https://doi.org/10.1016/j.renene.2022.07.035
  21. Cermak, V., Huckenholz, H.G., Rybach, L., Schmid, R. (1982). Radioactive heat generation in rocks. In: K Hellwege, ed. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology. Springer, Berlin, Heidelberg, New York: New Series, Group V. Geophysics and Space Research; 1982: 433-481
  22. Chen, D. (2010). Concepts of a basic EGS model for the Cooper Basin, Australia. In Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010
  23. Cooper, G.T., Beardsmore, G.R., Waining, B.S., Pollington, N., Driscoll, J.P. (2010). The relative costs of engineered geothermal system exploration and development in Australia. In Proceedings of the World Geothermal Congress
  24. Correia, A., Ramalho, E.C. (1999). One-dimensional thermal models constrained by seismic velocities and surface radiogenic heat production for two main geotectonic units in southern Portugal. Tectonophysics, 306(3-4), 261-268. https://doi.org/10.1016/S0040-1951(99)00059-1
  25. Elmas, A. (2021). Tectonic and crustal structure of the Eastern Pontides using Bouguer gravity data. Acta Geophysica, 69(5), 1637-1650. https://doi.org/10.1007/s11600-021-00640-3
  26. Everett, B. (2007). Saving energy-how to cut energy wastage, D. Elliott (Ed.), Sustainable Energy, Opportunities and Limitations, Palgrave Macmillan, 108-134
  27. Eyüboğlu, Y., Chung, S.L., Santosh, M., Dudas, F.O., Akaryalı, E. (2011). The transition from shoshonitic to adakitic magmatism in the Eastern Pontides, NE Turkey: implications for slab window melting. Gondwana Research, 19(2), 413-429. https://doi.org/10.1016/j.gr.2010.07.006
  28. Eyüboğlu, Y., Dudas, F.O., Chatterjee, N., Santosh, M., Billor, M.Z., Yuva, S. (2018). Petrology, geochronology and tectonic setting of early Triassic alkaline metagabbros from the Eastern Pontide Orogenic Belt (NE Turkey): Implications for the geodynamic evolution of Gondwana's early Mesozoic northern margin. Tectonics, 37(9), 3174-3206. https://doi.org/10.1029/2017TC004837
  29. Eyüboğlu, Y., Dudás, F.Ö., Zhu, D.C., Santosh, M., Liu, Z., Chatterjee, N., Yi, K. (2021). Late Cretaceous alkaline magmas of the Eastern Pontides Orogenic Belt (NE Turkey): A review with new geological, geochemical and geochronological data. Gondwana Research, 97, 204-239. https://doi.org/10.1016/j.gr.2021.05.009
  30. Gürsel, F. 1991. Ayder (Çamlıhemşin-Rize) ve Çevresinin Jeotermal Enerji Yönünden İncelenmesi, (MSc Thesis), Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü
  31. Giellen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N., Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50. https://doi.org/10.1016/j.esr.2019.01.006
  32. Gültekin, F., Hatipoğlu Temizel, E., Babacan, A.E., Kırmacı, M.Z., Fırat Ersoy, A., Subaşı, B.M. (2019). Conceptual model of the Şavşat (Artvin/NE Turkey) Geothermal Field developed with hydrogeochemical, isotopic, and geophysical studies. Geothermal Energy, 7, 1-26. https://doi.org/10.1186/s40517-019-0128-5
  33. Hatipoğlu Temizel, E., Gültekin, F., Ersoy Fırat, A. 2019. Rare earth elements and yttrium geochemistry of the geothermal fields in the eastern Black Sea Region (Ordu, Rize, Artvin), NE Turkey. Bulletin of the Mineral Research and Exploration, 160, 135- 153. https://doi.org/10.19111/bulletinofmre.502835
  34. Hatipoğlu Temizel, E., Gültekin, F., Ersoy, A.F. (2020). Major, trace, and rare earth element geochemistry of the Ayder and İkizdere (Rize, NE Turkey) geothermal waters: Constraints for water–rock interactions. Geothermics, 86, 101810. https://doi.org/10.1016/j.geothermics.2020.101810
  35. Jennejohn, D., Hines, B., Gawell, K., Blodgett, L. (2012). Geothermal: international market overview report. Geothermal Energy Association, Washington
  36. Karslı, O., Aydin, F., Sadiklar, M. (2004). The morphology and chemistry of K-feldspar megacrysts from Ikizdere Pluton: evidence for acid and basic magma interactions in granitoid rocks, NE–Turkey. Geochemistry, 64(2), 155-170. https://doi.org/10.1016/j.chemer.2003.02.001
  37. Karslı, O., Chen, B., Aydin, F., Şen, C. (2007). Geochemical and Sr–Nd–Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos, 98(1-4), 67-96. https://doi.org/10.1016/j.lithos.2007.03.005
  38. Karslı, O., Dokuz, A., Uysal, İ., Aydin, F., Kandemir, R., Wijbrans, J. (2010). Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos, 114(1-2), 109-120. https://doi.org/10.1016/j.lithos.2009.08.003
  39. Karslı, O., Ketenci, M., Uysal, İ., Dokuz, A., Aydin, F., Chen, B., Kandemir, R., Wijbrans, J. (2011). Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: potential parental melts and geodynamic implications. Lithos, 127(1-2), 354-372. https://doi.org/10.1016/j.lithos.2011.08.014
  40. Karslı, O., Dokuz, A., Uysal, İ., Ketenci, M., Chen, B., Kandemir, R. (2012). Deciphering the shoshonitic monzonites with I-type characteristic, the Sisdaği pluton, NE Turkey: Magmatic response to continental lithospheric thinning. Journal of Asian Earth Sciences, 51, 45-62. https://doi.org/10.1016/j.jseaes.2012.02.003
  41. Karakaya, N., Karakaya, M.C., Nalbantçılar, M.T., Yavuz, F. (2007). Relation between spring-water chemistry and hydrothermal alteration in the Şaplıca volcanic rocks, Şebinkarahisar (Giresun, Turkey). Journal of Geochemical Exploration, 93(1), 35-46. https://doi.org/10.1016/j.gexplo.2006.08.012
  42. Karayel, G.K., Javani, N., Dincer, I. (2022). Effective use of geothermal energy for hydrogen production: A comprehensive application. Energy, 249, 123597. https://doi.org/10.1016/j.energy.2022.123597
  43. Kaygusuz, A., Siebel, W., Ilbeyli, N., Arslan, M., Satir, M., Sen, C. (2010). Insight into magma genesis at convergent plate margins-a case study from the eastern Pontides (NE Turkey). Neues Jahrbuch Fur Mineralogie-Abhandlungen, 187(3), 265. https://doi.org/ 10.1127/0077-7757/2010/0178
  44. Kaygusuz, A., Aydınçakır, E. (2011). Petrogenesis of a Late Cretaceous composite pluton from the eastern Pontides: the Dagbașı pluton, NE Turkey. Neues Jahrbuch fur Mineralogie, Abhandlungen, 188(3), 211-233. https://doi.org/10.1127/0077-7757/2011/0201
  45. Kaygusuz, A., Şen, C. (2011). Calc-alkaline I-type plutons in the eastern Pontides, NE Turkey: U–Pb zircon ages, geochemical and Sr–Nd isotopic compositions. Geochemistry, 71(1), 59-75. https://doi.org/10.1016/j.chemer.2010.07.005
  46. Kaygusuz, A., Arslan, M., Siebel, W., Sipahi, F., Ilbeyli, N. (2012a). Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey. International Geology Review, 54(15), 1776-1800. https://doi.org/10.1080/00206814.2012.676371
  47. Kaygusuz, A., Arslan, M., İlbeyli, N., Sipahi, F. (2012b). Doğu Pontid kuzey zonu ve kuzey-güney zon geçişinde yüzeylenen Kretase-Paleosen yaşlı granitoyidik sokulumların petrokimyası, Sr-Nd-Pb-O izotop jeokimyası, jeokronolojisi ve jeodinamik gelişimi, Tübitak Çaydağ Project No: 109Y052 final report (Turkish with English Abstract), 175
  48. Kaygusuz, A., Sahin, K. (2016). Petrographical, geochemical and petrological characteristics of Eocene volcanic rocks in the Mescitli area, Eastern Pontides (NE Turkey). Journal of Engineering Research and Applied Science, 5(2), 473-486
  49. Kaygusuz, A., Aydincakir, E., Yucel, C., Atay, H.E. (2021a). Petrographic and geochemical characteristics of carboniferous plutonic rocks around Erenkaya (Gümüşhane, NE Turkey). Journal of Engineering Research and Applied Science, 10(2), 1774-1788
  50. Kaygusuz, A., Arslan, M., Temizel, İ., Aydınçakır, E. (2021b). U–Pb zircon ages and petrogenesis of the Late Cretaceous I-type granitoids in arc setting, Eastern Pontides, NE Turkey. Journal of African Earth Sciences, 174, 104040. https://doi.org/10.1016/j.jafrearsci.2020.104040
  51. Ketin, İ. (1966). Tectonic units of Anatolia (Asia minor). Bulletin of the Mineral Research and Exploration, 66(66)
  52. Koelbel, T., Genter, A. (2017). Enhanced geothermal systems: the Soultz-sous-Forêts project. In Towards 100% Renewable Energy: Techniques, Costs and Regional Case-Studies (pp. 243-248). Springer International Publishing. https://doi.org/10.1007/978-3-319-45659-1_25
  53. Lachenbruch, A.H. (1979). Heat flow in the Basin and Range province and thermal effects of tectonic extension. Geothermics and Geothermal Energy, 34-50. https://doi.org/10.1007/BF00879732
  54. Maden, N., Gelişli, K., Eyüboğlu, Y., Bektaş, O. (2009). Two-and-three-dimensional crustal thickness of the eastern pontides (NE Turkey). Turkish Journal of Earth Sciences, 18(2), 225-238. https://doi.org/10.3906/yer-0703-3
  55. Maden, N. (2012). One-dimensional thermal modeling of the eastern pontides orogenic belt (NE Turkey). Pure and Applied Geophysics, 169, 235-248. https://doi.org/10.1007/s00024-011-0296-0
  56. Maden, N. (2013). Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere. Geoscience Frontiers, 4(4), 389-398. https://doi.org/10.1016/j.gsf.2013.02.001
  57. Maden, N., Akaryalı, E. (2015). Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralization (eastern Pontides, NE Türkiye). Journal of Applied Geophysics, 122, 74-85. https://doi.org/10.1016/j.jappgeo.2015.09.003
  58. Okay, A. İ., Şahintürk, Ö. 1997. Pulur bölgesi stratigrafisi ve tektoniği (Bayburt, Doğu Pontidler). MTA Dergisi, 119, 1-22
  59. Okay, I.A., Tüysüz, O. (1999). Tethyan sutures of northern Türkiye. Geological Society, London, Special Publication, 156, 475-515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  60. Omenda, P., Varun, C., Chandrasekharam, D. (2012) High heat generating granites of East Africa: Possible EGS sources. In: Proceedings of the 4th African Rift Geothermal Conference Nairobi, Kenya, 1–4
  61. Özkan, R., Şener, M., Helvaci, C., Şener, M.F. (2011). Aliağa (İzmir) jeotermal alanındaki hidrotermal alterasyonlar ve termal sularla ilişkisi. Yerbilimleri, 32(1), 141-168
  62. Özkaptan, M. (2019). Crustal disequilibrium of the central Pontides (northern Turkey) due to oroclinal bending revealed by gravity modelling. Journal of Asian Earth Sciences, 186, 104058. https://doi.org/10.1016/j.jseaes.2019.104058
  63. Pamuk, E. (2019). Investigating edge detection, Curie point depth, and heat flow using EMAG2 magneticand EGM08 gravity data in the northern part of Eastern Anatolia, Turkey. Turkish Journal of Earth Sciences, 28(6), 805-821. https://doi.org/10.3906/yer-1902-34
  64. Pan, S. Y., Gao, M., Shah, K. J., Zheng, J., Pei, S. L., Chiang, P. C. (2019). Establishment of enhanced geothermal energy utilization plans: Barriers and strategies. Renewable energy, 132, 19-32. https://doi.org/10.1016/j.renene.2018.07.126
  65. Rice, S.P., Robertson, A.H. Ustaömer, T. (2006). Late Cretaceous-Early Cenozoic tectonic evolution of the Eurasian active margin in the Central and Eastern Pontides, northern Turkey. Geological Society, London, Special Publications, 260(1), 413-445. https://doi.org/10.1144/GSL.SP.2006.260.01.1
  66. Rybach, L. (1976). Radioactive heat production: A physical property determined by the chemistry. In: RGI Strens, ed. The Physical and Chemistry of Minerals and Rocks. New York, USA: Wiley-Interscience Publication; 1976, 245-276
  67. Şen, C., Arslan, M., Van, A. (1998). Geochemical and petrological characteristics of the Eastern Pontide Eocene (?) alkaline volcanic province, NE Turkey. Turkish Journal of Earth Sciences, 7(3), 231-240
  68. Şener, M.F., Şener, M., Uysal, I.T. (2017). The evolution of the Cappadocia Geothermal Province, Anatolia (Turkey): geochemical and geochronological evidence. Hydrogeology Journal, 25(8), 2323-2345. https://doi.org/10.1007/s10040-017-1613-1
  69. Şener, M.F. (2018). Akhüyük (Konya) jeotermal alanındaki hidrotermal akışkan dolaşımı ve traverten oluşum mekanizması, Orta Anadolu, Türkiye. Türkiye Jeoloji Bülteni, 61(2), 193-206. https://doi.org/10.25288/tjb.437943
  70. Şener, M.F. (2019). A new approach to Kırşehir (Turkey) geothermal waters using REY, major elements and isotope geochemistry. Environmental Earth Sciences, 78, 1-15. https://doi.org/10.1007/s12665-019-8068-8
  71. Şener, M.F., Baba, A. (2019). Geochemical and hydrogeochemical characteristics and evolution of Kozaklı geothermal fluids, Central Anatolia, Turkey. Geothermics, 80, 69-77. https://doi.org/10.1016/j.geothermics.2019.02.012
  72. Şener, M.F., Baba, A., Uzelli, T., Akkuş, İ., Mertoğlu, O. (2022). Türkiye Jeotermal Kaynaklar Strateji Raporu, Maden ve Petrol İşleri Genel Müdürlüğü, 1-149
  73. Şener, M. F., Uzelli, T., Akkuş, İ., Mertoğlu, O., Baba, A. (2023). The potential, utilization, and development of geothermal energy in Türkiye. Bulletin of the Mineral Research and Exploration 171, 69-90. https://doi.org/10.19111/bulletinofmre.1229381
  74. Şengör, A.M.C., Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241. https://doi.org/10.1016/0040-1951(81)90275-4
  75. Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., Petty, S. (2006) The future of geothermal energy. Massachusetts Institute of Technology. 358
  76. Temizel, İ., Arslan, M., Ruffet, G., Peucat, J.J. (2012). Petrochemistry, geochronology and Sr–Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-related origin and mantle source characteristics. Lithos, 128, 126-147. https://doi.org/10.1016/j.lithos.2011.10.006
  77. Temizel, İ., Arslan, M., Yücel, C., Abdioğlu, E., Ruffet, G. (2016). Geochronology and geochemistry of Eocene-aged volcanic rocks around the Bafra (Samsun, N Turkey) area: Constraints for the interaction of lithospheric mantle and crustal melts, Lithos, 258-259, 92-114. https://doi.org/10.1016/j.lithos.2016.04.023
  78. Temizel, I., Yazar, E.A., Arslan, M., Kaygusuz, A., Aslan, Z. (2018). Mineral chemistry, whole-rock geochemistry and petrology of Eocene I-type shoshonitic plutons in the Gölköy area (Ordu, NE Turkey). Bulletin of the Mineral Research and Exploration, 157(157), 121-152. https://doi.org/10.19111/bulletinofmre.371623
  79. Tokel, S. (1981). Plaka tektoniğinde magmatik yerleşimler ve jeokimya: Türkiye’den örnekler. Yeryuvarı ve insan, 6(3–4), 55-65
  80. Topuz, G., Altherr, R., Siebel, W., Schwarz, W.H., Zack, T., Hasözbek, A., Barth, M., Satır, M., Şen, C., (2010). Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: the Gümüşhane pluton (NE Turkey). Lithos, 116(1-2), 92-110. https://doi.org/10.1016/j.lithos.2010.01.003
  81. Türkiye National Energy Plan (2022). Republic of Türkiye Ministry of Energy and Natural Resources, https://enerji.gov.tr/Media/Dizin/EIGM/tr/Raporlar/TUEP/T%C3%BCrkiye_National_Energy_Plan.pdf
  82. Ustaömer, T., Robertson, A.H.F., (1996). Paleotethyan tectonic evolution of the North Tethyan margin in the central Pontides, N Turkey. In International symposium on the geology of the Black Sea Region, Proceedings-I (Vol. 24, p. 33)
  83. Van Schmus, W.R. (1995). Natural radioactivity of the crust and mantle. In Global earth physics: A handbook of physical constants (Vol. 1, pp. 283-291). Washington, DC: American Geophysical Union
  84. Verzhbitskii, E.V. (2002). Heat flow and the age of the lithosphere in the Black Sea. Oceanology, 42(6), 834-839. https://doi.org/10.1134/S0001437006020147
  85. Vigneresse, J.L., Jolivet, J., Cuney, M., Bienfait, G. (1987). Heat flow, heat production and granite depth in western France. Geophysical Research Letters, 14(3), 275-278. https://doi.org/10.1029/GL014i003p00275
  86. Vural, A., Gundogdu, A., (2020). High-fluoride risk and toxicity in surface waters in Gumushane-Gokdere valley drainage network (NE Turkey). Journal of Engineering Research and Applied Science, 9(1), 1323-1334
  87. Yilmaz, S., Boztuğ, D. (1996). Space and time relations of three plutonic phases in the Eastern Pontides, Turkey. International Geology Review, 38(10), 935-956. https://doi.org/10.1080/00206819709465373
  88. Yılmaz Sahin, S., Güngör, Y. and Boztug, D. (2004). Comparative petrogenetic investigation of composite Kaçkar Batholith granitoids in Eastern Pontide magmatic arc-Northern Turkey. Earth, planets and space, 56(4), 429-446. https://doi.org/10.1186/BF03352496
  89. Yılmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, Ş.C., Şengör, A.M.C. (1997). Geology and tectonic evolution of the Pontides, in Regional and petroleum geology of the Black Sea and surrounding region. The American Association of Petroleum Geologists. 68, 183-226. https://doi.org/10.1306/M68612C11
  90. Yücel, C. (2019). Geochronology, geochemistry, and petrology of adakitic Pliocene–Quaternary volcanism in the Şebinkarahisar (Giresun) area, NE Turkey. International Geology Review, 61(6), 754-777. https://doi.org/10.1080/00206814.2018.1461029
  91. Zhang, Y.J., Li, Z.W., Guo, L.L., Gao, P., Jin, X.P., Xu, T.F. (2014). Electricity generation from enhanced geothermal systems by oilfield produced water circulating through reservoir stimulated by staged fracturing technology for horizontal wells: A case study in Xujiaweizi area in Daqing Oilfield, China. Energy, 78, 788-805. https://doi.org/10.1016/j.energy.2014.10.073
  92. Zhang, C., Feng, Q., Zhang, L., Qin, S., Jiang, G., Hu, J., Hu, S., Huang, R., Zhang, H. and Hassan, M., 2022. Characteristics of Radiogenic Heat Production of Widely Distributed Granitoids in Western Sichuan, Southeast Tibetan Plateau. Lithosphere, 4165618. https://doi.org/10.2113/2022/4165618

Last update:

No citation recorded.

Last update: 2024-10-03 23:08:16

No citation recorded.