skip to main content

Multi-criteria optimal sizing and analysis of PV/wind/fuel cell/battery/diesel generator for rural electrification: A case study in Chad

1Department of Physics, University of Nairobi, PO Box 30197-00100, Nairobi, Kenya

2Distributed Energy Team, Jeju Global Research Center, Korea Institute of Energy Research, (63357) 200, Haemajihaean-ro, Gujwa-eup, Jeju-si, Jeju, South Korea

3School of Engineering, University of Eldoret, PO Box 1125-30100, Eldoret, Kenya

Received: 27 Feb 2024; Revised: 6 Apr 2024; Accepted: 15 Apr 2024; Available online: 18 Apr 2024; Published: 1 May 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Access to sustainable, clean, affordable, and reliable electricity is crucial for social and economic development, yet Sub-Saharan Africa (SSA) struggles significantly in this context. In CHAD, only 11.3% of the population is able to access electricity, making it one of the least electrified countries in SSA with the lowest clean energy access. In rural areas, electricity access falls to just 1.3%. This research applies and executes a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm using MATLAB R2023b to assess the techno-economic, environmental, and social impacts of a hybrid system based on optimal PV/Wind/Battery/Fuel Cell (FC)/Diesel generator (DG) sizing for rural electrification in CHAD. The proposed system's self-sufficiency index (SSSI) and the Annualized System Cost (ASC) were chosen as objective functions to guarantee the economic feasibility of the system, higher self-sufficiency, and lower dependence on external energy sources (DG). The simulation results show that the optimal size of the proposed system supplies the load demand by 100% of the renewable energy sources (RES)  fraction, and the optimal capacities of the main components to supply the load demand are: Solar Power (493 KW), Wind Turbine (166 KW), Battery Energy Charge/Discharge (229180 kWh /221300 kWh), Hydrogen tank storage energy (83 874 kWh), Electrolyzer size (202 KW), Fuel cell size (144 KW). The evelized cost of electricity (LCOE) of 0.2982 $/kWh, which is 51.12% lower than the national unit production costs of electricity in rural areas of CHAD (0.61 $/kWh). This LCOE is also the lowest compared to previous works done using HOMER Pro for the country of CHAD. The results also give a levelized cost of hydrogen (LCOH) of 3.8563 US $/kg, lower than for all studies found in the literature for the country of Chad. The proposed system's yearly avoided greenhouse gas (GHG) emission is 374 640 kg. The proposed system will create five (5) new jobs (JCO) and improve the Human Development Index (HDI) of the study area by 17.66% (the obtained HDI is 0.4683, and the CHAD HDI is 0.398) with an SSSI of 51.14%. This study provides a better practical energy design tool in decision-making for designers, companies, investors, policymakers, and the Chadian government when implementing this type of system in particular rural locations.

Fulltext View|Download
Keywords: Avoided greenhouse gas (GHG); social assessment; Hybrid energy system; Optimal sizing; rural electrification; Particle Swarm Optimization algorithm; zero-carbon electricity.

Article Metrics:

  1. Abdelhamid, I. H. (2023). These de doctorat/Ph.D, Promotion des énergies renouvelables pour réduire l’impact environnemental du Tchad à travers sa balance énergétique : cas du solaire et de l’éolien. UNIVERSITE DE DOUALA (Laboratory of Energy, Materials, Modeling and Methods)
  2. Ajlan, A., Tan, C. W., & Abdilahi, A. M. (2017). Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen. Renewable and Sustainable Energy Reviews, 75(November 2016), 559–570. https://doi.org/10.1016/j.rser.2016.11.024
  3. Al-Buraiki, A. S., & Al-Sharafi, A. (2022). Hydrogen production via using excess electric energy of an off-grid hybrid solar/wind system based on a novel performance indicator. Energy Conversion and Management, 254(January), 115270. https://doi.org/10.1016/j.enconman.2022.115270
  4. Albertus, P., Manser, J. S., & Litzelman, S. (2020). Long-Duration Electricity Storage Applications, Economics, and Technologies. Joule, 4(1), 21–32. https://doi.org/10.1016/j.joule.2019.11.009
  5. Alshammari, N., & Asumadu, J. (2020). Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms. Sustainable Cities and Society, 60(March), 102255. https://doi.org/10.1016/j.scs.2020.102255
  6. Amara, S., Toumi, S., Salah, C. Ben, & Saidi, A. S. (2021). Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system. Energy, 233, 121166. https://doi.org/10.1016/j.energy.2021.121166
  7. Anoune, K., Bouya, M., Astito, A., & Abdellah, A. Ben. (2018). Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews, 93(April), 652–673. https://doi.org/10.1016/j.rser.2018.05.032
  8. Ascend Analytics. (n.d.). Loss of Load Probability: Application to Montana. 1–7
  9. Ayop, R., & Tan, C. W. (2017). A comprehensive review on photovoltaic emulator. Renewable and Sustainable Energy Reviews, 80(January), 430–452. https://doi.org/10.1016/j.rser.2017.05.217
  10. Aziz, A. S., Tajuddin, M. F. N., Adzman, M. R., Azmi, A., & Ramli, M. A. M. (2019). Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq. Renewable Energy, 138, 775–792. https://doi.org/10.1016/j.renene.2019.02.004
  11. Azoumah, Y., Yamegueu, D., Ginies, P., Coulibaly, Y., & Girard, P. (2011). Sustainable electricity generation for rural and peri-urban populations of sub-Saharan Africa: The “flexy-energy” concept. Energy Policy, 39(1), 131–141. https://doi.org/10.1016/j.enpol.2010.09.021
  12. Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2016). Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy, 115, 1022–1041. https://doi.org/10.1016/j.energy.2016.09.007
  13. Bahramara, S., Moghaddam, M. P., & Haghifam, M. R. (2016). Optimal planning of hybrid renewable energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews, 62, 609–620. https://doi.org/10.1016/j.rser.2016.05.039
  14. BHAGWAT, S., & OLCZAK, M. (2020). Green hydrogen : bridging the energy transition in Africa and Europe. In FSR Global (Issue October). https://cadmus.eui.eu/handle/1814/68677
  15. Bhandari, R., & Shah, R. R. (2021). Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany. Renewable Energy, 177, 915–931. https://doi.org/10.1016/j.renene.2021.05.149
  16. Bocklisch, T. (2015). Hybrid energy storage systems for renewable energy applications. Energy Procedia, 73, 103–111. https://doi.org/10.1016/j.egypro.2015.07.582
  17. Bukar, A. L., Tan, C. W., & Lau, K. Y. (2019). Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy, 188(June), 685–696. https://doi.org/10.1016/j.solener.2019.06.050
  18. Cameron, L., & Van Der Zwaan, B. (2015). Employment factors for wind and solar energy technologies: A literature review. Renewable and Sustainable Energy Reviews, 45, 160–172. https://doi.org/10.1016/j.rser.2015.01.001
  19. Cardenas, G. A. R., Khezri, R., Mahmoudi, A., & Kahourzadeh, S. (2022). Optimal Planning of Remote Microgrids with Multi-Size Split-Diesel Generators. Sustainability (Switzerland), 14(5). https://doi.org/10.3390/su14052892
  20. Casati, P., Moner-Girona, M., Shehu, I. K., Szabó, S., & Nhamo, G. (2023). Datasets for a multidimensional analysis connecting clean energy access and social development in sub-Saharan Africa. Data in Brief, 47, 108948. https://doi.org/10.1016/j.dib.2023.108948
  21. Ciocia, A., Amato, A., Leo, P. Di, Fichera, S., Malgaroli, G., Spertino, F., & Tzanova, S. (2021). Systems : Effect of Grid Limitation and Storage Installation
  22. Delano, O., Odou, T., Bhandari, R., & Adamou, R. (2020). Hybrid off-grid renewable power system for sustainable rural electri fi cation in Benin. Renewable Energy, 145, 1266–1279. https://doi.org/10.1016/j.renene.2019.06.032
  23. Diaf, S., Diaf, D., Belhamel, M., Haddadi, M., & Louche, A. (2007). A methodology for optimal sizing of autonomous hybrid PV / wind system. 35(11), 5708–5718. https://doi.org/10.1016/j.enpol.2007.06.020
  24. Diop, M., Sow, S., Pabame, Z., Ndiaye, A., & Kébé, C. M. F. (2019). Technical, Economic and Environmental Analysis of Hybrid Energy Solutions for Rural Electrification in the Republic of Chad. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 296, 26–37. https://doi.org/10.1007/978-3-030-34863-2_3
  25. Djounga, B. A. (2023). Planning and implementation of a sustainable, decentralized village electricity access program: Case study of Ourda Community – Chad
  26. Dufo-López, R., Cristóbal-Monreal, I. R., & Yusta, J. M. (2016). Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renewable Energy, 94, 280–293. https://doi.org/10.1016/j.renene.2016.03.065
  27. EIA, U. S. E. I. A. (n.d.). How much carbon dioxide is produced per kilowatthour of U.S. electricity generation?
  28. El Boujdaini, L., Mezrhab, A., Moussaoui, M. A., Jurado, F., & Vera, D. (2022). Sizing of a stand-alone PV–wind–battery–diesel hybrid energy system and optimal combination using a particle swarm optimization algorithm. Electrical Engineering, 104(5), 3339–3359. https://doi.org/10.1007/s00202-022-01529-0
  29. Emad, D., El-Hameed, M. A., & El-Fergany, A. A. (2021). Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: Case study for a remote area. Energy Conversion and Management, 249, 114847. https://doi.org/10.1016/j.enconman.2021.114847
  30. Falama, R. Z., Saidi, A. S., Soulouknga, M. H., & Salah, C. Ben. (2023). A techno-economic comparative study of renewable energy systems based different storage devices. Energy, 266(June 2022), 126411. https://doi.org/10.1016/j.energy.2022.126411
  31. Fu, X. (2022). Statistical machine learning model for capacitor planning considering uncertainties in photovoltaic power. Protection and Control of Modern Power Systems, 7(1). https://doi.org/10.1186/s41601-022-00228-z
  32. Gangopadhyay, A., Seshadri, A. K., & Patil, B. (2024). Wind-solar-storage trade-offs in a decarbonizing electricity system. Applied Energy, 353(PA), 121994. https://doi.org/10.1016/j.apenergy.2023.121994
  33. Ghenai, C., & Bettayeb, M. (2019). Modelling and performance analysis of a stand-alone hybrid solar PV/Fuel Cell/Diesel Generator power system for university building. Energy, 171, 180–189. https://doi.org/10.1016/j.energy.2019.01.019
  34. Guangqian, D., Bekhrad, K., Azarikhah, P., & Maleki, A. (2018). A hybrid algorithm based optimization on modeling of grid independent biodiesel-based hybrid solar/wind systems. Renewable Energy, 122, 551–560. https://doi.org/10.1016/j.renene.2018.02.021
  35. H2data. (n.d.). http://www.h2data.de/ [Accessed on October 19, 2023]
  36. Hamanah, W. M., Abido, M. A., & Alhems, L. M. (2020). Optimum Sizing of Hybrid PV, Wind, Battery and Diesel System Using Lightning Search Algorithm. Arabian Journal for Science and Engineering, 45(3), 1871–1883. https://doi.org/10.1007/s13369-019-04292-w
  37. Hassan, R., Das, B. K., & Hasan, M. (2022). Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development. Energy, 250, 123823. https://doi.org/10.1016/j.energy.2022.123823
  38. Hassane, A. I., Ali, A. H. M., Tahir, A. M., & Hauglustaine, J. M. (2019). Simulation of a photovoltaic panels market for promoting solar energy in Chad. International Journal of Renewable Energy Research, 9(3), 1472–1469. https://doi.org/10.20508/ijrer.v9i3.9377.g7741
  39. Hassane, A. I., Didane, D. H., Tahir, A. M., & Hauglustaine, J. M. (2018). Wind and solar assessment in the Sahelian zone of Chad. International Journal of Integrated Engineering, 10(8), 164–174. https://doi.org/10.30880/ijie.2018.10.08.026
  40. Hassane, A. I., Didane, D. H., Tahir, A. M., Hauglustaine, J. M., Manshoor, B., Batcha, M. F. M., Tamba, J. G., & Mouangue, R. M. (2022). Techno-economic feasibility of a remote PV mini-grid electrification system for five localities in Chad. International Journal of Sustainable Engineering, 15(1), 179–193. https://doi.org/10.1080/19397038.2022.2101707
  41. Hassane, A. I., Didane, D. H., Tahir, A. M., Mouangue, R. M., Tamba, J. G., & Hauglustaine, J. M. (2022). Comparative analysis of hybrid renewable energy systems for off-grid applications in chad. International Journal of Renewable Energy Development, 11(1), 49–62. https://doi.org/10.14710/ijred.2022.39012
  42. Hondo, H., & Moriizumi, Y. (2017). Employment creation potential of renewable power generation technologies: A life cycle approach. Renewable and Sustainable Energy Reviews, 79(August 2016), 128–136. https://doi.org/10.1016/j.rser.2017.05.039
  43. Islam, M. R., Akter, H., Howlader, H. O. R., & Senjyu, T. (2022). Optimal Sizing and Techno-Economic Analysis of Grid-Independent Hybrid Energy System for Sustained Rural Electrification in Developing Countries: A Case Study in Bangladesh. Energies, 15(17). https://doi.org/10.3390/en15176381
  44. Jahangiri, M., Soulouknga, M. H., Bardei, F. K., Shamsabadi, A. A., Akinlabi, E. T., Sichilalu, S. M., & Mostafaeipour, A. (2019). Techno-econo-environmental optimal operation of grid-wind-solar electricity generation with hydrogen storage system for domestic scale, case study in Chad. International Journal of Hydrogen Energy, 44(54), 28613–28628. https://doi.org/10.1016/j.ijhydene.2019.09.130
  45. Jamshidi, S., Pourhossein, K., & Asadi, M. (2021). Size estimation of wind/solar hybrid renewable energy systems without detailed wind and irradiation data: A feasibility study. Energy Conversion and Management, 234(January), 113905. https://doi.org/10.1016/j.enconman.2021.113905
  46. Kaabeche, A., & Ibtiouen, R. (2014). Techno-economic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system. Solar Energy, 103, 171–182. https://doi.org/10.1016/j.solener.2014.02.017
  47. Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. In Frontiers in Energy Research (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fenrg.2021.743114
  48. Kelly, E., Medjo Nouadje, B. A., Tonsie Djiela, R. H., Kapen, P. T., Tchuen, G., & Tchinda, R. (2023). Off grid PV/Diesel/Wind/Batteries energy system options for the electrification of isolated regions of Chad. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e13906
  49. Khan, F. A., Pal, N., & Saeed, S. H. (2021). Optimization and sizing of SPV/Wind hybrid renewable energy system: A techno-economic and social perspective. Energy, 233, 121114. https://doi.org/10.1016/j.energy.2021.121114
  50. Kharrich, M., Mohammed, O. H., & Akherraz, M. (2019). Assessment of renewable energy sources in Morocco using economical feasibility technique. International Journal of Renewable Energy Research, 9(4), 1856–1864. https://doi.org/10.20508/ijrer.v9i4.10181.g7791
  51. Kharrich, M., Mohammed, O. H., Alshammari, N., & Akherraz, M. (2021). Multi-objective optimization and the effect of the economic factors on the design of the microgrid hybrid system. Sustainable Cities and Society, 65(October 2020), 102646. https://doi.org/10.1016/j.scs.2020.102646
  52. Koholé, Y. W., Djiela, R. H. T., Fohagui, F. C. V., & Ghislain, T. (2023). Comparative study of thirteen numerical methods for evaluating Weibull parameters for solar energy generation at ten selected locations in Cameroon. Cleaner Energy Systems, 4(November 2022), 100047. https://doi.org/10.1016/j.cles.2022.100047
  53. León Gómez, J. C., De León Aldaco, S. E., & Aguayo Alquicira, J. (2023). A Review of Hybrid Renewable Energy Systems: Architectures, Battery Systems, and Optimization Techniques. Eng, 4(2), 1446–1467. https://doi.org/10.3390/eng4020084
  54. Li, C. H., Zhu, X. J., Cao, G. Y., Sui, S., & Hu, M. R. (2009). Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology. Renewable Energy, 34(3), 815–826. https://doi.org/10.1016/j.renene.2008.04.018
  55. Li, J., Liu, P., & Li, Z. (2022). Optimal design and techno-economic analysis of a hybrid renewable energy system for off-grid power supply and hydrogen production: A case study of West China. Chemical Engineering Research and Design, 177, 604–614. https://doi.org/10.1016/j.cherd.2021.11.014
  56. Lombardi, P., Arendarski, B., Suslov, K., Shamarova, N., Sokolnikova, P., Pantaleo, A. M., & Komarnicki, P. (2018). A Net-Zero Energy System Solution for Russian Rural Communities. E3S Web of Conferences, 69. https://doi.org/10.1051/e3sconf/20186901013
  57. Ma, J., & Yuan, X. (2023). Techno-economic optimization of hybrid solar system with energy storage for increasing the energy independence in green buildings. Journal of Energy Storage, 61(December 2022), 106642. https://doi.org/10.1016/j.est.2023.106642
  58. Maklewa Agoundedemba. (2023). Energy Status in Africa: Challenges, Progress and Sustainable Pathways. Energies,16, 7708
  59. Mandal, S., Das, B. K., & Hoque, N. (2018). Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. Journal of Cleaner Production, 200, 12–27. https://doi.org/10.1016/j.jclepro.2018.07.257
  60. Masrur, H., Howlader, H. O. R., Lotfy, M. E., Khan, K. R., Guerrero, J. M., & Senjyu, T. (2020). Analysis of techno-economic-environmental suitability of an isolated microgrid system located in a remote island of Bangladesh. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072880
  61. Mbainaissem Peurdoum Richard (Consultant National au PNUD, A. E. (2014). Rapport national du tchad
  62. Mehrjerdi, H. (2019). Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. International Journal of Hydrogen Energy, 44(23), 11574–11583. https://doi.org/10.1016/j.ijhydene.2019.03.158
  63. Mouachi, R., Jallal, M. A., Gharnati, F., & Raoufi, M. (2020). Multiobjective Sizing of an Autonomous Hybrid Microgrid Using a Multimodal Delayed PSO Algorithm : A Case Study of a Fishing Village. 2020
  64. Mumtaz, F., Zaihar Yahaya, N., Tanzim Meraj, S., Singh, B., Kannan, R., & Ibrahim, O. (2021). Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Engineering Journal, 12(4), 3747–3763. https://doi.org/10.1016/j.asej.2021.03.022
  65. Nasser, M., Megahed, T. F., Ookawara, S., & Hassan, H. (2022). Techno-economic assessment of clean hydrogen production and storage using hybrid renewable energy system of PV/Wind under different climatic conditions. Sustainable Energy Technologies and Assessments, 52(PB), 102195. https://doi.org/10.1016/j.seta.2022.102195
  66. Olivetti, E. A., Ceder, G., Gaustad, G. G., & Fu, X. (2017). Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule, 1(2), 229–243. https://doi.org/10.1016/j.joule.2017.08.019
  67. Ouedraogo, B. I., Kouame, S., Azoumah, Y., & Yamegueu, D. (2015). Incentives for rural off grid electrification in Burkina Faso using LCOE. Renewable Energy, 78, 573–582. https://doi.org/10.1016/j.renene.2015.01.044
  68. PNUD. (2020). Élargir l’horizon des populations et de la planète : le développement humain et l’Anthropocène / Rapport sur le développement humain 2020. http://hdr.undp.org/en/data
  69. Ram, M., Aghahosseini, A., & Breyer, C. (2020). Job creation during the global energy transition towards 100% renewable power system by 2050. Technological Forecasting and Social Change, 151(September 2018), 119682. https://doi.org/10.1016/j.techfore.2019.06.008
  70. Ramli, M. A. M., Bouchekara, H. R. E. H., & Alghamdi, A. S. (2018). Optimal sizing of PV/wind/diesel hybrid microgrid system using multi-objective self-adaptive differential evolution algorithm. Renewable Energy, 121, 400–411. https://doi.org/10.1016/j.renene.2018.01.058
  71. Sawle, Y., Gupta, S. C., & Bohre, A. K. (2018). Socio-techno-economic design of hybrid renewable energy system using optimization techniques. Renewable Energy, 119, 459–472. https://doi.org/10.1016/j.renene.2017.11.058
  72. Shafiullah, G. M., Masola, T., Samu, R., Elavarasan, R. M., Begum, S., Subramaniam, U., Romlie, M. F., Chowdhury, M., & Arif, M. T. (2021). Prospects of Hybrid Renewable Energy-Based Power System: A Case Study, Post Analysis of Chipendeke Micro-Hydro, Zimbabwe. IEEE Access, 9, 73433–73452. https://doi.org/10.1109/ACCESS.2021.3078713
  73. Singh, S., Chauhan, P., Aftab, M. A., Ali, I., Suhail Hussain, S. M., & Ustun, T. S. (2020). Cost Optimization of a Stand-Alone Hybrid Energy System with Fuel Cell and PV. Energies 2020, Vol. 13, Page 1295, 13(5), 1295. https://doi.org/10.3390/EN13051295
  74. Sokolnikova, P., Lombardi, P., Arendarski, B., Suslov, K., Pantaleo, A. M., Kranhold, M., & Komarnicki, P. (2020). Net-zero multi-energy systems for Siberian rural communities: A methodology to size thermal and electric storage units. Renewable Energy, 155, 979–989. https://doi.org/10.1016/j.renene.2020.03.011
  75. Talla Konchou, F. A., Djeudjo Temene, H., Tchinda, R., & Njomo, D. (2021). Techno-economic and environmental design of an optimal hybrid energy system for a community multimedia centre in Cameroon. SN Applied Sciences, 3(1), 1–12. https://doi.org/10.1007/s42452-021-04151-0
  76. The World Bank Group. (2021). World Development Indicators | DataBank. In DataBank - World Development Indicators. https://databank.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG/1ff4a498/Popular-Indicators%0Ahttp://databank.worldbank.org/data/reports.aspx?source=world-development-indicators
  77. Uwineza, L., Kim, H. G., Kleissl, J., & Kim, C. K. (2022). Technical Control and Optimal Dispatch Strategy for a Hybrid Energy System. Energies, 15(8), 1–19. https://doi.org/10.3390/en15082744
  78. Wang, Z., Wang, Q., Zhang, Z., & Razmjooy, N. (2021). A new configuration of autonomous CHP system based on improved version of marine predators algorithm: A case study. International Transactions on Electrical Energy Systems, 31(4), 1–22. https://doi.org/10.1002/2050-7038.12806
  79. Wankouo Ngouleu, C. A., Koholé, Y. W., Fohagui, F. C. V., & Tchuen, G. (2023a). Optimal sizing and techno-enviro-economic evaluation of a hybrid photovoltaic/wind/diesel system with battery and fuel cell storage devices under different climatic conditions in Cameroon. Journal of Cleaner Production, 423(September). https://doi.org/10.1016/j.jclepro.2023.138753
  80. Wankouo Ngouleu, C. A., Koholé, Y. W., Fohagui, F. C. V., & Tchuen, G. (2023b). Optimal sizing and techno-enviro-economic evaluation of a hybrid photovoltaic/wind/diesel system with battery and fuel cell storage devices under different climatic conditions in Cameroon. Journal of Cleaner Production, 423(May). https://doi.org/10.1016/j.jclepro.2023.138753
  81. Wu, Q., Fan, Z., Zhang, J., Sun, Q., & Yang, J. (2019). Optimization Design and Simulation of Microgrid in Amdjarass Town, Chad. E3S Web of Conferences, 118. https://doi.org/10.1051/e3sconf/201911802015
  82. Xu, Y., Pei, J., Cui, L., Liu, P., & Ma, T. (2022). The Levelized Cost of Storage of Electrochemical Energy Storage Technologies in China. Frontiers in Energy Research, 10(June), 1–16. https://doi.org/10.3389/fenrg.2022.873800
  83. Yimen, N., Tchotang, T., Kanmogne, A., Idriss, I. A., Musa, B., Aliyu, A., Okonkwo, E. C., Abba, S. I., Tata, D., Meva’a, L., Hamandjoda, O., & Dagbasi, M. (2020). Optimal sizing and techno-economic analysis of hybrid renewable energy systems—a case study of a photovoltaic/wind/battery/diesel system in Fanisau, Northern Nigeria. Processes, 8(11), 1–25. https://doi.org/10.3390/pr8111381
  84. Zhang, G., Shi, Y., Maleki, A., & A. Rosen, M. (2020). Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renewable Energy, 156, 1203–1214. https://doi.org/10.1016/j.renene.2020.04.010
  85. Zhang, Y., & Yu, Y. (2022). Carbon Value Assessment of Hydrogen Energy Connected to the Power Grid. IEEE Transactions on Industry Applications, 58(2), 2803–2811. https://doi.org/10.1109/TIA.2021.3126691

Last update:

No citation recorded.

Last update: 2024-05-18 13:32:07

No citation recorded.