skip to main content

Production of biodiesel (isopropyl ester) from coconut oil by microwave assisted transesterification: parametric study and optimization

Department of Chemical Engineering, Faculty of Industrial and System Engineering, Institut Teknologi Sepuluh Nopember, Indonesia

Received: 8 Mar 2024; Revised: 16 Apr 2024; Accepted: 2 May 2024; Available online: 8 May 2024; Published: 1 Jul 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Biodiesel, a renewable fuel for diesel vehicle engines, has been commonly produced from transesterification process involving triglycerides from vegetable oil with alcohol. One of the most promising candidates for vegetable oil due to its abundance in Indonesia is coconut oil. However, the short carbon chain present in coconut oil necessitates the use of longer-chain alcohol types to adjust to the biodiesel carbon chain, such as isopropanol. Therefore, this research focused on producing biodiesel (isopropyl ester) from coconut oil using isopropanol and NaOH catalyst through a transesterification process. To enhance this process, microwave technology was utilized for its ability to lower the biodiesel production reaction time from the conventional one-hour timeframe to less than ten minutes, increase energy efficiency, and improve biodiesel quality. The primary objective was to investigate the impact of reaction time, catalyst concentration, and microwave power on the isopropyl ester yield. Further optimization was conducted using Response Surface Methodology (RSM) with Box-Behnken Design (BBD) to illustrate the model's effectiveness and applicability. Based on BBD optimization simulation, the optimal condition for producing isopropyl ester from coconut oil using microwave technology is a 1-minute reaction time, 0.2 wt.% NaOH catalyst concentration, and 443.9 W microwave power, maximizing the yield to 99.89%. This research highlights the potential of microwave assisted transesterification and the reliability of this innovative approach, contributing to the development of isopropyl ester production with enhanced quality that meets the specifications of the Indonesian National Standard (SNI).

Fulltext View|Download
Keywords: Biodiesel; Coconut Oil; Isopropyl Ester; Microwave; Transesterification

Article Metrics:

  1. Agarwal, R., Hansmann, T., Tan, K. T., Agarwal, V., Lath, V., & Yi, Z. (2020). Ten ways to boost Indonesia’s energy sector in a postpandemic world. https://www.mckinsey.com/industries/oil-and-gas/our-insights/ten-ways-to-boost-indonesias-energy-sector-in-a-postpandemic-world#. Accessed on 5 February 2024
  2. Ahmad, A., Alkharfy, K. M., Wani, T. A., & Raish, M. (2015). Application of Box-Behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi. International Journal of Biological Macromolecules, 72(1), 990-997; https://doi.org/10.1016/j.ijbiomac.2014.10.011
  3. Ansori, A. & Mahfud, M. (2021). Box-Behnken Design for Optimization on Biodiesel Production from Palm Oil and Methyl Acetate using Ultrasound Assisted Interesterification Method. Periodica Polytechnica Chemical Engineering, 66(1), 30-40; https://doi.org/10.3311/PPch.17610
  4. Asian Development Bank. (2020). Indonesia Energy Sector Assessment, Strategy and Road Map Update. https://doi.org/10.22617/TCS200429. Indonesia
  5. Bahadi, M., Yusoff, M. F., Salimon, J., & Derawi, D. (2019). Optimization of response surface methodology by D-optimal design for synthesis of food grade palm kernel based biolubricant. Industrial Crops and Products, 139(1), 1-10; https://doi.org/10.1016/j.indcrop.2019.06.015
  6. Bustaman, S. (2009). Strategi pengembangan industri biodiesel berbasis kelapa di Maluku. Jurnal Penelitian dan Pengembangan Pertanian, 28(2), 46-53; https://doi.org/10.21082/jp3.v28n2.2009.p46
  7. Dauqan, E. M. A., Sani, H. A., Abdullah, A., & Kasim, Z. M. (2011). Fatty Acids Composition of Four Different Vegetable Oil (Red Palm Olein, Palm Oil, Corn Oil, and Coconut Oil) by Gas Chromatography. In Proceeding International Conference on Chemistry and Chemical Engineering, 31-34
  8. Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. J. Sci. Ind. Res. (India). 64(1), 858-865; https://doi.org/10.1016/j.pecs.2005.09.001
  9. De Oliveira, A. N., da Silva Costa, L. R., de Oliviera Pires, L. H., do Nascimento, L. A. S., Angélica, R. S., da Costa, C. E. F., Zamian, J. R., & da Rocha Filho, G. N. (2013). Microwave Assisted Preparation of a New Esterification Catalyst from Wasted Flint Kaolin. Fuel, 103(1), 626-631; https://doi.org/10.1016/j.fuel.2012.07.017
  10. Elganidi, I., Elarbe, B., Rizuan, N., & Abdullah, N. (2022). Synthesis, characterisation and pre-evaluation of a novel terpolymer as pour point depressants to improve the Malaysian crude oil flowability. Petroleum Exploration and Production Technology, 12(1), 437–449; https://doi.org/10.1007/s13202-021-01445-2
  11. El-Gendy, N. Sh, Deriase, S. F., Hamdy, A., & Abdallah, R. I. (2015). Statistical optimization of biodiesel production from sunflower waste cooking oil using basic heterogeneous biocatalyst prepared from eggshells. Egyptian Journal of Petroleum, 24(1), 37-48; https://doi.org/10.1016/j.ejpe.2015.02.004
  12. El Sherbiny, S. A., Refaat, A. A., & El Sheltawy, S. T. (2010). Production of Biodiesel Using the Microwave Technique, J. Adv. Res, 1(1), 309-314; https://doi.org/10.1016/j.jare.2010.07.003
  13. Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., & dos Santos, W. N. L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186; https://doi.org/10.1016/j.aca.2007.07.011
  14. Gude, V. G., Patil, P., Martinez-Guerra, E., Deng, S., & Nirmalakhandan, N. (2013). Microwave Energy Potensial for Biodiesel. Sustainable Chemical Processes, 1(5), 1-31; https://doi.org/10.1186/2043-7129-1-5
  15. Hadi, W. A. (2009). Pemanfaatan Minyak Biji Nyamplung (Calophylluminophyllum L) Sebagai Bahan Bakar Minyak Pengganti Solar (Utilization of Nyamplung Seed Oil (Calophyllum inophyllum L) as a Fuel Replacement for Solar Oil). Jurnal Riset Daerah, 8(2), 1044-1052; https://adoc.pub/pemanfaatan-minyak-biji-nyamplung-pemanfaatan-minyak-bi-ji-ny.html. Accessed on 28 February 2024
  16. Hadiyanto, H., Aini, A. P., Widayat, W., Kusmiyati, K., Budiman. A., & Rosyadi, A. (2020). Multi-Feedstock Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil,and Waste Cooking Oil. Int. J. Renew. Energy Dev, 9(1), 119; https://doi.org/10.14710/ijred.9.1.119-123
  17. Handayani, P. A., Abdullah, A., & Hadiyanto, H. (2017). Biodiesel Production from Nyamplung (Calophyllum inophyllum) Oil using Ionic Liquid as A Catalyst and Microwave Heating System. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 293-298. https://doi.org/10.9767/bcrec.12.2.807.293-298
  18. Hassan, M. H. & Kalam, M. A. (2013). An Overview of Biofuel as a Renewable Energy Source: Development and Challenges. Procedia Eng., 56(1), 39-53; https://doi.org/10.1016/j.proeng.2013.03.087
  19. Hsiao, M. C., Lin, C. C., & Chang, Y. H. (2011). Microwave Irradiation Assisted Transesterification of Soybean Oil to Biodiesel Catalyzed by Nanopowder Calcium Oxide. Fuel, 90(1), 1963-1967; https://doi.org/10.1016/j.fuel.2011.01.004
  20. Huang, D., Zhou, H., & Lin, L. (2011). Biodiesel: An Alternative to Conventional Fuel. Energy Procedia, 16(1), 1874-1885; https://doi.org/10.1016/j.egypro.2012.01.287
  21. Huang, S. Z., Sadiq, M., & Chien, F. (2021). The impact of natural resource rent, financial development, and urbanization on carbon emission. Environmental Science and Pollution Research, 30(1), 42753-42755; https://doi.org/10.1007/s11356-021-16818-7
  22. Ieva, G., Makareviciene, V., Sendzikiene, E., Slinksiene, R., & Paleckiene, R. (2020). Application of Snail Shells as a Heterogeneous Catalyst for Rapeseed Oil Butyl Esters Production. Green Chemistry Letters and Reviews, 17(1), 1-3; https://doi.org/10.1080/17518253.2023.2285809
  23. Iqbal, M. M. A., Bakar, W. A. W. A., Toemen, S., Razak, F. I. A., & Azelee, N. I. W. (2020). Optimization study by Box-Behnken design (BBD) and mechanistic insight of CO2 methanation over Ru-Fe-Ce/-Al2O3 catalyst by in-situ FTIR technique. Arabian Journal of Chemistry, 13(1), 4171; https://doi.org/10.1016/j.arabjc.2019.06.010
  24. Jahirul, M. I, Koh, W., Brown, R. J., Senadeera, W., O’Hara, I., & Moghaddam, L. (2014). Biodiesel Production from Non-edible Beauty Leaf (Calophyllum inophyllum) oil: Process Optimization Using Response Surface Methodology (RSM). Energies, 7(1), 5322; https://doi.org/10.3390/en7085317
  25. Kashyap, S. S., Gogate, P. R., & Joshi, S. M. (2019). Ultrasound assisted synthesis of biodiesel from karanja oil by interesterification: Intensification studies and optimization using RSM. Ultrasonics Sonochemistry, 50(1), 36–45; https://doi.org/10.1016/j.ultsonch.2018.08.019
  26. Kolakoti, A., Setiyo, M., & Rochman, M. L. (2022). A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach. Int. J. Renew. Energy Dev, 11(3), 708; https://doi.org/10.14710/ijred.2022.43627
  27. Kumar, R., Kumar, G. R., & Chandrashekar, N. (2011). Microwave Assisted Alkali Catalyzed Transesterification of Pongamia Pinnata Seed Oil for Biodiesel Production. Bioresources Technology, 102(1), 6617-6620; https://doi.org/10.1016/j.biortech.2011.03.024
  28. Kusuma, H. S., Ansori, A., Wibowo, S., & Mahfud, M. (2018). Optimization of Transesterification Process of Biodiesel from Nyamplung (Calophyllum inophyllum Linn) using Microwave with CaO Catalyst. Korean Chemical Engineering Research, 56(4): 435-440; https://doi.org/10.9713/kcer.2018.56.4.435
  29. Latif S. N. A, Chiong, M. S., Rajoo, S., Takada, A., Chun, Y. Y., Tahara, K., & Ikegami, Y. (2021). The trend and status of energy resources and greenhouse gas emissions in the Malaysia power generation mix. Energies, 14(8), 1-2; https://doi.org/10.3390/en14082200
  30. Lyeonov, S., Pimonenko, T., Bilan, Y., Štreimikiene ̇, D., & Mentel, G. (2019). Assessment of green investments’ impact on sustainable development: Linking gross domestic product per capita, greenhouse gas emissions and renewable energy. Energies, 12(20), 1-4; https://doi.org/10.3390/en12203891
  31. Mahfud, M., Kalsum, U., & Aswie, V. (2020). Biodiesel Production through Catalytic Microwave In-Situ Transesterification of Microalgae (Chlorella sp.). Int. J. Renew. Energy Dev, 9(1), 113-114; https://doi.org/10.14710/ijred.9.1.113-117
  32. Manco, I., Giordani, L., Vaccari, V., & Oddone, M. (2011). Microwave Technology for The Biodiesel Production: Analytical Assesments. Fuel, 95(1), 108-112; https://doi.org/10.1016/j.fuel.2011.09.047
  33. Montgomery, D.C. (2014). Design and Analysis of Experiments, Eighth Edition. John Wiley & Sons, Inc., Hoboken, NJ, USA.29
  34. Mugagga, G. R., Omosa, I. B., & Thoruwa, T. (2023). Optimization and Analysis of a Low-Pressure Water Scrubbing Biogas Upgrading System via the Taguchi and Response Surface Methodology Approaches. Int. J. Renew. Energy Dev, 12(1), 106-107; https://doi.org/10.14710/ijred.2023.48269
  35. Multi Spices. “The Outlook of Indonesia’s Coconut Plantation”. https://www.multispices.com/post/the-outlook-of-indonesia-s-coconut-plantation. Accessed on 12 July 2023
  36. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley Sons, Inc., Hoboken, NJ, USA
  37. Nugroho, A. P., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, S., & Sukatiman S. (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability, 15(3), 1-2; https://doi.org/10.3390/su15032342
  38. Nguyen, V. G., Pham, M. T., Linh Le, N. V., Cuong Le, H., Truong, T. H., & Cao, D. N. (2023). A comprehensive review on the use of biodiesel for diesel engines. Int. J. Renew. Energy Dev, 12(4), 720-722; https://doi.org/10.14710/ijred.2023.54612
  39. Pathil, P. D., Gude, V. G., Camacho, L. M., & Deng, S. (2010). Microwave Assisted Catalytic Transesterification of Camela Sativa Oil. Energy & Fuels, 24(1), 1298-1304; https://doi.org/10.1021/ef9010065
  40. Prayanto, D. S., Salahudin, M., Qadariyah, L., Mahfud, M. (2016). Pembuatan Biodiesel Dari Minyak Kelapa Dengan Katalis NaOH Menggunakan Gelombang Mikro (Microwave) Secara Kontinyu. Jurnal Teknik ITS, 5(1), 1, https://doi.org/10.12962/j23373539.v5i1.15173
  41. Rohman, G. & Fatmawati, F. (2016). Pembuatan Methyl Ester dari Minyak Nabati dengan Katalis NaOH dan Ca(OH)2 Konsentrasi Rendah dengan Bantuan Gelombang Mikro (Microwave). Bachelor thesis, Institut Teknologi Sepuluh Nopember
  42. Silviana, S., Anggoro, D. D., Salsabila, C. A., Aprilio, K., Utami, A. W., Sa’adah, A. N., & Dalanta, F. (2022). A Review on the Recent Breakthrough Methods and Influential Parameters in the Biodiesel Synthesis and Purification. Int. J. Renew. Energy Dev, 11(4), 1014-1015; https://doi.org/10.14710/ijred.2022.43147
  43. Singh, G., Ahuja, N., Sharma, P., & Capalash, N. (2009). Response surface methodology for the optimized production of an alkalophilic laccase from γ-proteobacterium JB. BioResources, 4(2), 549; https://doi.org/10.15376/biores.4.2.544-553
  44. Suryanto, A., Suprapto, S., & Mahfud, M. (2015). Production Biodiesel from Coconut Oil Using Microwave: Effect of Some Parameters on Transesterification Reaction by NaOH Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2), 162-168; https://doi.org/10.9767/bcrec.10.2.8080.162-168
  45. Theresia B. S., Parulian, S., & Widhyawan, P. (2022). Exploring Indonesia’s energy policy failures through the JUST framework. Energy Policy, 164(2022), 2; https://doi.org/10.1016/j.enpol.2022.112914
  46. Wang, P. S., Tat, M. E. & Van Gerpen, J. (2005). The Production Of Fatty Acid Isopropyl Esters and Their Use As A Diesel Engine Fuel. J Am Oil Chem Soc, 82(1), 845–849; https://doi.org/10.1007/s11746-005-1153-7
  47. Zhang, S., Gang Zu, Y., Jie Fu, Y., Luo, M., Yang Zhang, D., & Efferth, T. (2010). Rapid Microwave-assisted Transesterification of Yellow Horn Oil to Biodiesel Using a Heteropolyacid Solid Catalyst. Bioresour. Technol., 101(1), 931-936; https://doi.org/10.1016/j.biortech.2009.08.069

Last update:

No citation recorded.

Last update: 2025-02-08 14:25:51

No citation recorded.