skip to main content

Multi-objective optimisation and sensitivity analysis of component influences on efficiency in air-based bifacial photovoltaic thermal systems (B-PVT)

1Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

2Research Centre for Energy Conversion and Conservation, BRIN, Serpong, Indonesia

3Centre of Electrical Energy System (CEES), Institute of Future Energy, UTM, Johor, Malaysia

4 Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Indonesia

5 Mechanical engineering, Faculty of Engineering, Widyatama University, Indonesia

6 Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia

View all affiliations
Received: 27 Mar 2024; Revised: 16 May 2024; Accepted: 29 May 2024; Available online: 14 Jun 2024; Published: 1 Jul 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Bifacial Photovoltaic Thermal (B-PVT) technologies have seen significant advancements in sustainable energy production by converting solar energy into useful electric and thermal energies simultaneously. The present study explored the optimisation of these systems by first performing sensitivity analysis on design parameters to identify key variables affecting their performance efficiencies. The system design and performance were then studied simultaneously using a multi-objective optimisation algorithm NSGA-II. It was found that increasing packing factors from 0.4 to 0.8 leads to a 15% increase in both electrical and thermal efficiencies, while an asymmetry in channel depths could lead to an 8% increase in thermal efficiency.  Key design parameters such as transmissivity cover, mass flow rate, packing factors and channel depth ratios were found to have the most significant influence on overall system performance. Multi-objective optimisation of design variables results in a Pareto front describing trade-offs between solutions of conflicting objectives of performance. Optimisation with preferences towards overall efficiency over temperature differential produces solutions with a high overall efficiency yield of 70.79%, requiring specific values for mass flow rate (0.197 kg/s) and channel ratio (0.129), however at the expense of a reduced temperature differential of 5.12oC. Solutions with a balanced preference towards both objectives could produce a solution that is less biased in performance.

Fulltext View|Download
Keywords: Bifacial Photovoltaic Thermal (B-PVT); Multi-Objective Optimization; NSGA-II; Efficiency Enhancement; Sensitivity Analysis.

Article Metrics:

  1. Abbas, S., Yuan, Y., Zhou, J., Hassan, A., Yu, M., & Yasheng, J. (2022). Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system. Renewable Energy, 187, 522-536. https://doi.org/10.1016/j.renene.2022.01.088
  2. Abdul-Ganiyu, S., Quansah, D. A., Ramde, E. W., Seidu, R., & Adaramola, M. S. (2021). Study effect of flow rate on flat-plate water-based photovoltaic-thermal (PVT) system performance by analytical technique. Journal of Cleaner Production, 321, 128985. https://doi.org/10.1016/j.jclepro.2021.128985
  3. Abdulmajeed, O. M., Jadallah, A. A., Bilal, G. A., & Arıcı, M. (2022). Experimental investigation on the performance of an advanced bi-fluid photovoltaic thermal solar collector system. Sustainable Energy Technologies and Assessments, 54, 102865. https://doi.org/10.1016/j.seta.2022.102865
  4. An, B. H., Choi, K. H., & Choi, H. U. (2022). Influence of triangle-shaped obstacles on the energy and exergy performance of an air-cooled photovoltaic thermal (PVT) collector. Sustainability, 14(20), 13233. https://doi.org/10.3390/su142013233
  5. Choi, Y. (2022). Seasonal Performance Evaluation of Air-Based Solar Photovoltaic/Thermal Hybrid System. Energies, 15(13), 4695. https://doi.org/10.3390/en15134695
  6. Datta, S., Kapoor, R., & Mehta, P. (2023). A multi-objective optimization model for outpatient care delivery with service fairness. Business Process Management Journal, 29(3), 630-652. https://doi.org/10.1108/BPMJ-07-2022-0335
  7. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons
  8. Ewe, W. E., Sopian, K., Mohanraj, M., Fudholi, A., Asim, N., & Ibrahim, A. (2024). Exergetic performance of jet impingement bifacial photovoltaic-thermal solar air collector with different packing factors and jet distributions. Heat Transfer Engineering, 45(10), 904-914. https://doi.org/10.1080/01457632.2023.2227807
  9. Florschuetz, L. W. (1979). Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors. Solar energy, 22(4), 361-366. https://doi.org/10.1016/0038-092X(79)90190-7
  10. Fudholi, A., Zohri, M., Jin, G. L., Ibrahim, A., Yen, C. H., Othman, M. Y., ... & Sopian, K. (2018). Energy and exergy analyses of photovoltaic thermal collector with∇-groove. Solar Energy, 159, 742-750. https://doi.org/10.1016/j.solener.2017.11.056
  11. Fudholi, A., Zohri, M., Rukman, N. S. B., Nazri, N. S., Mustapha, M., Yen, C. H., ... & Sopian, K. (2019). Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study. Renewable and Sustainable Energy Reviews, 100, 44-51. https://doi.org/10.1016/j.rser.2018.10.019
  12. Gopi, S., & Muraleedharan, C. (2022). Modelling and experimental studies on a double-pass hybrid photovoltaic-thermal solar air heater with vertical slats attached in the lower channel. International Journal of Ambient Energy, 43(1), 4664-4674. https://doi.org/10.1080/01430750.2021.1918241
  13. Gürbüz, E. Y., Kusun, B., Tuncer, A. D., & Ural, T. (2023). Experimental investigation of a double-flow photovoltaic/thermal air collector with natural dolomite powder-embedded thermal energy storage unit. Journal of Energy Storage, 64, 107220. https://doi.org/10.1016/j.est.2023.107220
  14. Hamada, A., Emam, M., Refaey, H. A., Moawed, M., & Abdelrahman, M. A. (2023). Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study. Energy, 284, 128574. https://doi.org/10.1016/j.energy.2023.128574
  15. Huang, M., Wang, Y., Li, M., Keovisar, V., Li, X., Kong, D., & Yu, Q. (2021). Comparative study on energy and exergy properties of solar photovoltaic/thermal air collector based on amorphous silicon cells. Applied Thermal Engineering, 185, 116376. https://doi.org/10.1016/j.applthermaleng.2020.116376
  16. Ishak, M. A. A. B., Ibrahim, A., Fauzan, M. F., Fazlizan, A., Ewe, W. E., & Kazem, H. A. (2023). The effect of a reversed circular jet impingement on a bifacial module PVT collector energy performance. Case Studies in Thermal Engineering, 52, 103752. https://doi.org/10.1016/j.csite.2023.103752
  17. Kallio, S., & Siroux, M. (2020). Energy analysis and exergy optimization of photovoltaic-thermal collector. Energies, 13(19), 5106. https://doi.org/10.3390/en13195106
  18. Kumar, A., & Dhiman, P. (2022). Analytical and experimental investigations of recyclic double pass photovoltaic thermal system. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 669-684. https://doi.org/10.1080/15567036.2022.2048924
  19. Kumar, A., & Dhiman, P. (2023). Modeling and optimization of photovoltaic thermal system under recyclic operation by response surface methodology. Renewable Energy, 203, 228-244. https://doi.org/10.1016/j.renene.2022.12.053
  20. Li, Z. X., Shahsavar, A., Al-Rashed, A. A., Kalbasi, R., Afrand, M., & Talebizadehsardari, P. (2019). Multi-objective energy and exergy optimization of different configurations of hybrid earth-air heat exchanger and building integrated photovoltaic/thermal system. Energy Conversion and Management, 195, 1098-1110. https://doi.org/10.1016/j.enconman.2019.05.074
  21. Mustapha, M., Fudholi, A., Nazri, N. S., Zaini, M. I. A., Rosli, N. N., Sulong, W. M. W., & Sopian, K. (2023). Mathematical modeling and experimental validation of bifacial photovoltaic–thermal system with mirror reflector. Case Studies in Thermal Engineering, 43, 102800. https://doi.org/10.1016/j.csite.2023.102800
  22. Fudholi, A., & Mustapha, M. (2020). Mathematical modelling of bifacial photovoltaic-thermal (BPVT) collector with mirror reflector. International Journal of Renewable Energy Research (IJRER), 10(2), 654-662. https://doi.org/10.20508/ijrer.v10i2.10603.g7936
  23. Nazri, N. S., Fudholi, A., Mustafa, W., Yen, C. H., Mohammad, M., Ruslan, M. H., & Sopian, K. (2019). Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector. Renewable and Sustainable Energy Reviews, 111, 132-144. https://doi.org/10.1016/j.rser.2019.03.024
  24. Nikzad, M., Zamen, M., & Ahmadi, M. H. (2022). Theoretical and experimental investigation of a photovoltaic/thermal panel partially equipped with thermoelectric generator under unstable operating conditions. International Journal of Energy Research, 46(5), 6790-6805. https://doi.org/10.1002/er.7621
  25. Podder, B., Das, S., & Biswas, A. (2023). Numerical analysis of a small sized water based solar photovoltaic-thermal collector. International Journal of Green Energy, 20(2), 113-128. https://doi.org/10.1080/15435075.2021.2023881
  26. Rajani, A., Darussalam, R., Pramana, R. I., & Santosa, A. (2018, November). Simulation of PV-Biogas Integration on hybrid power plant using HOMER: Study case of superior livestock breeding center and forage of animal feed (bbptu-hpt) baturraden. In 2018 International Conference on Sustainable Energy Engineering and Application (ICSEEA) (pp. 69-74). IEEE. https://doi.org/10.1109/ICSEEA.2018.8627132
  27. Ranjan, A., Podder, B., Das, B., & Biswas, A. (2024). Computational investigation of an innovative solar photovoltaic thermal collector with spiral shaped absorber using bifluid coolant. International Journal of Environmental Science and Technology, 21(3), 2827-2842. https://doi.org/10.1007/s13762-023-05088-0
  28. Sehrawat, R., Sahdev, R. K., Tiwari, S., Sehrawat, P., & Kumar, A. (2022, December). Recent advancements on Photovoltaic thermal and Greenhouse Dryer. In 2022 International Conference on Computational Modelling, Simulation and Optimization (ICCMSO) (pp. 374-378). IEEE. https://doi.org/10.1109/ICCMSO58359.2022.00078
  29. Shojaeefard, M. H., Al-Hamzawi, H. A. H., & Sharfabadi, M. M. (2023). Evaluating the Performance of Photovoltaic Thermal Systems in Varied Climate Conditions: An Exergy and Energy Analysis Approach. International Journal of Heat & Technology, 41(6). https://doi.org/10.18280/ijht.410610
  30. Su, W., Lu, Z., She, X., Zhou, J., Wang, F., Sun, B., & Zhang, X. (2022). Liquid desiccant regeneration for advanced air conditioning: A comprehensive review on desiccant materials, regenerators, systems and improvement technologies. Applied Energy, 308, 118394. https://doi.org/10.1016/j.apenergy.2021.118394
  31. Swinbank, W. C. (1963). Long‐wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society, 89(381), 339-348. https://doi.org/10.1002/qj.49708938105
  32. Nazri, N. S., Fudholi, A., Ruslan, M. H., & Sopian, K. (2018). Mathematical modeling of photovoltaic thermal-thermoelectric (PVT-TE) air collector. International Journal of Power Electronics and Drive Systems (IJPEDS), 9(2), 795-802. https://doi.org/10.11591/ijpeds.v9.i2.pp795-802
  33. Vera, J. T., Laukkanen, T., & Sirén, K. (2014). Performance evaluation and multi-objective optimization of hybrid photovoltaic–thermal collectors. Solar energy, 102, 223-233. https://doi.org/10.1016/j.solener.2014.01.014
  34. Vera, J. T., Laukkanen, T., & Sirén, K. (2014). Multi-objective optimization of hybrid photovoltaic–thermal collectors integrated in a DHW heating system. Energy and Buildings, 74, 78-90. https://doi.org/10.1016/j.enbuild.2014.01.011
  35. Tiwari, A. K., Chatterjee, K., & Deolia, V. K. (2023). Application of copper oxide nanofluid and phase change material on the performance of hybrid photovoltaic–thermal (PVT) system. Processes, 11(6), 1602. https://doi.org/10.3390/pr11061602
  36. Tiwari, A. K., Chatterjee, K., & Deolia, V. K. (2023). Effect of mass flow rate on the thermo-electrical performance of hybrid PVT system with curved-groove absorber. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 45(7), 382. https://doi.org/10.1007/s40430-023-04279-7
  37. Urrejola, E., Antonanzas, J., Ayala, P., Salgado, M., Ramírez-Sagner, G., Cortés, C., ... & Escobar, R. (2016). Effect of soiling and sunlight exposure on the performance ratio of photovoltaic technologies in Santiago, Chile. Energy Conversion and Management, 114, 338-347. https://doi.org/10.1016/j.enconman.2016.02.016
  38. Xie, Y., Zhou, J., Bisengimana, E., Jiang, F., Ji, W., Sun, L., ... & Yuan, Y. (2024). Exergy performance assessment of a novel air-cooled photovoltaic thermal collector with a double serpentine runner. Applied Thermal Engineering, 236, 121330. https://doi.org/10.1016/j.applthermaleng.2023.121330
  39. Yazdinejad, A., Dehghantanha, A., Parizi, R. M., & Epiphaniou, G. (2023). An optimized fuzzy deep learning model for data classification based on NSGA-II. Neurocomputing, 522, 116-128. https://doi.org/10.1016/j.neucom.2022.12.027
  40. Youns, Y. T., & Manshad, A. K. (2023). Effect of Green Nanomaterials on CO2 Diffusion Coefficient and Interfacial Tension in Nanofluids: Implication for CO2 Sequestrations. Arabian Journal for Science and Engineering, 1-29. https://doi.org/10.1007/s13369-023-08551-9
  41. Zarei, A., Izadpanah, E., & Babaie Rabiee, M. (2023). Using a nanofluid-based photovoltaic thermal (PVT) collector and eco-friendly refrigerant for solar compression cooling system. Journal of Thermal Analysis and Calorimetry, 148(5), 2041-2055. https://doi.org/10.1007/s10973-022-11850-2
  42. Zhao, Y., Li, W., Zhang, G., Li, Y., Ge, M., & Wang, S. (2023). Experimental performance of air-type BIPVT systems under different climate conditions. Sustainable Energy Technologies and Assessments, 60, 103458. https://doi.org/10.1016/j.seta.2023.103458

Last update:

No citation recorded.

Last update: 2025-02-08 12:01:45

No citation recorded.