1PLN Research Institute, Indonesia
2Department of Mechanical Engineering, Faculty of Egineering, Diponegoro University, Indonesia
3National Research and Innovation Agency, Indonesia, Indonesia
BibTex Citation Data :
@article{IJRED60234, author = {Nur Cahyo and Desy Sulistyowati and Mujammil Rahmanta and Muhamad Felani and Mochamad Soleh and Paryanto Paryanto and Adi Prismantoko and Hariana Hariana}, title = {A techno-economic and environmental analysis of co-firing implementation using coal and wood bark blend at circulating fluidized bed boiler}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {4}, year = {2024}, keywords = {co-firing; biomass; wood bark; CFB boiler; corrosion; slagging; fouling; emission; fuel cost}, abstract = { The study aimed to explore the effects of biomass co-firing of coal using acacia wood bark at circulating fluidized bed (CFB) boiler coal-fired power plant with 110 MWe capacity. The analysis focused on main equipment parameters, including the potential for slagging, fouling, corrosion, agglomeration, fuel cost, and specific environmental factors. Initially, coal and acacia wood bark fuel were blended at a 3% mass ratio, with calorific values of 8.59 MJ/kg and 16.59 MJ/kg, respectively. The corrosion due to chlorine and slagging potential when using wood bark was grouped into the minor and medium categories. The results showed that co-firing at approximately 3% mass ratio contributed to changes in the upper furnace temperature due to the variation in heating value, high total humidity, and a less homogeneous particle size distribution. Significant differences were also observed in the temperature of the lower furnace area, showing the presence of a foreign object covering the nozzle, which disturbed the ignition process. A comparison of the seal pot temperature showed imbalances as observed from the temperature indicators installed on both sides of boiler, with specific fuel consumption (SFC) increasing by approximately 0.17%. During the performance test, the price of acacia wood bark was 0.034 USD/kg, resulting in fuel cost of 0.023355 USD/kWh, adding 0.061 cent/kWh to coal firing cost. Despite co-firing, the byproducts of the combustion process, such as SO2 and NOx, still met environmental quality standards in accordance with government regulations. However, a comprehensive medium- and long-term impact evaluation study should be carried out to implement co-firing operations using acacia wood bark at coal-fired power plant. Based on the characteristics, such as low calorific value, with high ash, total moisture, and alkali, acacia wood bark showed an increased potential to cause slagging and fouling . }, pages = {726--735} doi = {10.61435/ijred.2024.60234}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60234} }
Refworks Citation Data :
Article Metrics:
Last update:
Last update: 2024-11-05 00:19:46
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.