skip to main content

Assessment of photovoltaic efficacy in antimony-based cesium halide perovskite utilizing transition metal chalcogenide

1Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah 51431, Saudi Arabia

2Solar Energy Research Institute (SERI), The National University of Malaysia (UKM), Malaysia

Received: 29 Apr 2024; Revised: 7 Jun 2024; Accepted: 15 Jun 2024; Available online: 28 Jun 2024; Published: 1 Sep 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Antimony-based perovskites have been recognized for their distinctive optoelectronic attributes, standard fabrication methodologies, reduced toxicity, and enhanced stability. The objective of this study is to systematically investigate and enhance the performance of all-inorganic solar cell architectures by integrating Cs3Sb2I9, a perovskite-analogous material, with WS2—a promising transition metal dichalcogenide—used as the electron transport layer (ETL), and Cu2O serving as the hole transport layer (HTL). This comprehensive assessment extends beyond the mere characterization of material attributes such as layer thickness, doping levels, and defect densities, to include a thorough investigation of interfacial defect effects within the structure. Optimal efficiency was observed when the Cs3Sb2I9 absorber layer thickness was maintained within the 600-700 nm range. The defect tolerance for the absorber layer was identified at 1×1015/cm3, with the ETL and HTL layers exhibiting significant defect tolerance at 1×1016/cm3 and 1×1017/cm3, respectively. Furthermore, this study calculated the minority carrier lifetime and diffusion length, establishing a strong correlation with defect density; a minority carrier lifetime of approximately 1 µs was noted for a defect density of1×1014/cm3 in the absorber layer. A noteworthy finding pertains to the balance between the high work function of the back contact and the incorporation of p-type back surface field layers, revealing that interposing a highly doped p+ layer between the Cu2O and the metal back contact can elevate the efficiency to 21.60%. This approach also provides the freedom to select metals with lower work functions, offering a cost-effective advantage for commercial-scale applications.

Fulltext View|Download
Keywords: Chalcogenide; Perovskite; Defect density; Energy Efficiency; Charge transport

Article Metrics:

  1. Abdelaziz, S., Zekry, A., Shaker, A., & Abouelatta, M. (2020). Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Optical Materials, 101, 109738. https://doi.org/10.1016/J.OPTMAT.2020.109738
  2. AlSaleem, S. S., Al-Qadami, E., Korany, H. Z., Shafiquzzaman, M., Haider, H., Ahsan, A., Alresheedi, M., AlGhafis, A., & AlHarbi, A. (2022). Computational Fluid Dynamic Applications for Solar Stills Efficiency Assessment: A Review. Sustainability, Vol. 14, Page 10700, 14(17), 10700. https://doi.org/10.3390/SU141710700
  3. Alshammari, F., Pesyridis, A., Alshammari, A. S., Alghafis, A., Alatawi, I., & Alzamil, A. (2022). Potential of capturing transportation wasted heat for better fuel economy and electricity generation: Comprehensive testing. Energy Conversion and Management, 267, 115939. https://doi.org/10.1016/J.ENCONMAN.2022.115939
  4. Baig, F., Khattak, Y. H., Marí, B., Beg, S., Ahmed, A., & Khan, K. (2018). Efficiency Enhancement of CH3NH3SnI3 Solar Cells by Device Modeling. Journal of Electronic Materials, 47(9), 5275–5282. https://doi.org/10.1007/S11664-018-6406-3/METRICS
  5. Benzetta, A. E. H., Abderrezek, M., & Djeghlal, M. E. (2020). A comparative study on generation and recombination process of kesterite CZTS based thin film solar cells for different designs. Optik, 219. https://doi.org/10.1016/J.IJLEO.2020.165300
  6. Boopathi, K. M., Karuppuswamy, P., Singh, A., Hanmandlu, C., Lin, L., Abbas, S. A., Chang, C. C., Wang, P. C., Li, G., & Chu, C. W. (2017). Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. Journal of Materials Chemistry, 5(39), 20843–20850. https://doi.org/10.1039/C7TA06679A
  7. Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 361, 527–532. https://doi.org/10.1016/S0040-6090(99)00825-1
  8. Burgelman, M., Verschraegen, J., Degrave, S., & Nollet, P. (2004). Modeling thin-film PV devices. Progress in Photovoltaics: Research and Applications, 12(2–3), 143–153. https://doi.org/10.1002/PIP.524
  9. Chatterjee, S., & Pal, A. J. (2016). Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures. Journal of Physical Chemistry C, 120(3), 1428–1437. https://doi.org/10.1021/ACS.JPCC.5B11540
  10. Chelvanathan, P., Hossain, M. I., & Amin, N. (2010). Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Current Applied Physics, 10(3), S387–S391. https://doi.org/10.1016/J.CAP.2010.02.018
  11. Correa-Baena, J. P., Luo, Y., Brenner, T. M., Snaider, J., Sun, S., Li, X., Jensen, M. A., Hartono, N. T. P., Nienhaus, L., Wieghold, S., Poindexter, J. R., Wang, S., Meng, Y. S., Wang, T., Lai, B., Holt, M. V., Cai, Z., Bawendi, M. G., Huang, L., … Fenning, D. P. (2019). Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science (New York, N.Y.), 363(6427), 627–631. https://doi.org/10.1126/SCIENCE.AAH5065
  12. Dasgupta, U., Chatterjee, S., & Pal, A. J. (2017). Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Solar Energy Materials and Solar Cells, 172, 353–360. https://doi.org/10.1016/J.SOLMAT.2017.08.012
  13. Devi, C., & Mehra, R. (2019). Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide). Journal of Materials Science, 54(7), 5615–5624. https://doi.org/10.1007/S10853-018-03265-Y/METRICS
  14. Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2014). Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 24(1), 151–157. https://doi.org/10.1002/ADFM.201302090
  15. Geist, J. (1979). Quantum efficiency of the p-n junction in silicon as an absolute radiometric standard. Applied Optics, 18(6), 760. https://doi.org/10.1364/AO.18.000760
  16. Geng, W., Tong, C. J., Liu, J., Zhu, W., Lau, W. M., & Liu, L. M. (2016). Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study. Scientific Reports 2016 6:1, 6(1), 1–8. https://doi.org/10.1038/srep20131
  17. Gourmelon, E., Lignier, O., Hadouda, H., Couturier, G., Bernède, J. C., Tedd, J., Pouzet, J., & Salardenne, J. (1997). MS2 (M = W, Mo) photosensitive thin films for solar cells. Solar Energy Materials and Solar Cells, 46(2), 115–121. https://doi.org/10.1016/S0927-0248(96)00096-7
  18. Hankare, P. P., Manikshete, A. H., Sathe, D. J., Chate, P. A., Patil, A. A., & Garadkar, K. M. (2009). WS2 thin films: Opto-electronic characterization. Journal of Alloys and Compounds, 479(1–2), 657–660. https://doi.org/10.1016/J.JALLCOM.2009.01.024
  19. Hao, L., Li, T., Ma, X., Wu, J., Qiao, L., Wu, X., Hou, G., Pei, H., Wang, X., & Zhang, X. (2021). A tin-based perovskite solar cell with an inverted hole-free transport layer to achieve high energy conversion efficiency by SCAPS device simulation. Optical and Quantum Electronics, 53(9), 1–17. https://doi.org/10.1007/S11082-021-03175-5/METRICS
  20. Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L., & Ahmed, N. (2019). Solar energy—A look into power generation, challenges, and a solar-powered future. International Journal of Energy Research, 43(3), 1049–1067. https://doi.org/10.1002/ER.4252
  21. Helander, M. G., Greiner, M. T., Wang, Z. B., Tang, W. M., & Lu, Z. H. (2011). Work function of fluorine doped tin oxide. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(1). https://doi.org/10.1116/1.3525641
  22. Hossain, M. I., Alharbi, F. H., & Tabet, N. (2015). Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy, 120, 370–380. https://doi.org/10.1016/J.SOLENER.2015.07.040
  23. Huang, P., Wang, Z., Liu, Y., Zhang, K., Yuan, L., Zhou, Y., Song, B., & Li, Y. (2017). Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p-i-n Perovskite Solar Cells. ACS Applied Materials and Interfaces, 9(30), 25323–25331. https://doi.org/10.1021/ACSAMI.7B06403/SUPPL_FILE/AM7B06403_SI_001.PDF
  24. Islam, M. S., Sobayel, K., Al-Kahtani, A., Islam, M. A., Muhammad, G., Amin, N., Shahiduzzaman, M., & Akhtaruzzaman, M. (2021). Defect study and modelling of SnX3-based perovskite solar cells with SCAPS-1D. Nanomaterials, 11(5). https://doi.org/10.3390/NANO11051218
  25. Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. Il. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials 2014 13:9, 13(9), 897–903. https://doi.org/10.1038/nmat4014
  26. Jin, Z., Zhang, Z., Xiu, J., Song, H., Gatti, T., & He, Z. (2020). A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: recent advances and challenges. Journal of Materials Chemistry A, 8(32), 16166–16188. https://doi.org/10.1039/D0TA05433J
  27. Kagan, C. R., Mitzi, D. B., & Dimitrakopoulos, C. D. (1999). Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science, 286(5441), 945–947. https://doi.org/10.1126/SCIENCE.286.5441.945
  28. Kim, S., Jeong, Y., Han, D. W., & Mo, C. Bin. (2023). Machine Learning-Assisted Defect Analysis and Optimization for P-I-N-Structured Perovskite Solar Cells. Journal of Electronic Materials, 52(9), 5861–5871. https://doi.org/10.1007/S11664-023-10533-4/METRICS
  29. Leccisi, E., & Fthenakis, V. (2020). Life-cycle environmental impacts of single-junction and tandem perovskite PVs: A critical review and future perspectives. Progress in Energy, 2(3). https://doi.org/10.1088/2516-1083/AB7E84
  30. Leijtens, T., Eperon, G. E., Noel, N. K., Habisreutinger, S. N., Petrozza, A., & Snaith, H. J. (2015). Stability of Metal Halide Perovskite Solar Cells. Advanced Energy Materials, 5(20), 1500963. https://doi.org/10.1002/AENM.201500963
  31. Leijtens, T., Eperon, G. E., Pathak, S., Abate, A., Lee, M. M., & Snaith, H. J. (2013). Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Communications 2013 4:1, 4(1), 1–8. https://doi.org/10.1038/ncomms3885
  32. Li, S., Chen, Z., & Zhang, W. (2012). Dye-sensitized solar cells based on WS 2 counter electrodes. Materials Letters, 72, 22–24. https://doi.org/10.1016/J.MATLET.2011.12.052
  33. Lignier, O., Couturier, G., Tedd, J., Gonbeau, D., & Salardenne, J. (1997). Photoactivity enhancement of WS2 sputtered thin films by use of nickel. Thin Solid Films, 299(1–2), 45–52. https://doi.org/10.1016/S0040-6090(96)09319-4
  34. Liu, C., Wang, K., Yi, C., Shi, X., Du, P., Smith, A. W., Karim, A., & Gong, X. (2015). Ultrasensitive solution-processed perovskite hybrid photodetectors. Journal of Materials Chemistry C, 3(26), 6600–6606. https://doi.org/10.1039/C5TC00673B
  35. Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics 2013 8:2, 8(2), 133–138. https://doi.org/10.1038/nphoton.2013.342
  36. Liu, J., Zhuang, D., Luan, H., Cao, M., Xie, M., & Li, X. (2013). Preparation of Cu(In,Ga)Se2 thin film by sputtering from Cu(In,Ga)Se2 quaternary target. Progress in Natural Science: Materials International, 23(2), 133–138. https://doi.org/10.1016/J.PNSC.2013.02.006
  37. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013 501:7467, 501(7467), 395–398. https://doi.org/10.1038/nature12509
  38. Najlaoui, B., Alghafis, A., & Nejlaoui, M. (2023). Robust design of a low cost flat plate collector under uncertain design parameters. Energy Reports, 10, 2950–2961. https://doi.org/10.1016/J.EGYR.2023.09.039
  39. Raoui, Y., Ez-Zahraouy, H., Tahiri, N., El Bounagui, O., Ahmad, S., & Kazim, S. (2019). Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: Simulation study. Solar Energy, 193, 948–955. https://doi.org/10.1016/J.SOLENER.2019.10.009
  40. Schileo, G., & Grancini, G. (2021). Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. Journal of Materials Chemistry C, 9(1), 67–76. https://doi.org/10.1039/D0TC04552G
  41. Sobayel, K., Akhtaruzzaman, M., Rahman, K. S., Ferdaous, M. T., Al-Mutairi, Z. A., Alharbi, H. F., Alharthi, N. H., Karim, M. R., Hasmady, S., & Amin, N. (2019). A comprehensive defect study of tungsten disulfide (WS2) as electron transport layer in perovskite solar cells by numerical simulation. Results in Physics, 12, 1097–1103. https://doi.org/10.1016/J.RINP.2018.12.049
  42. Sobayel, K., Rahman, K. S., Karim, M., Aijaz, M., Dar, M., Shar, M. A., Misran, H., & Amin, N. (2018). Numerical modeling on prospective buffer layers for tungsten di-sulfide (WS2) solar cells by scaps-1D. Chalcogenide Letters
  43. Thomas, A. S. (2022a). A Review on Antimony-based Perovskite Solar Cells. Equilibrium Journal of Chemical Engineering, 6(2), 75. https://doi.org/10.20961/EQUILIBRIUM.V6I2.64322
  44. Thomas, A. S. (2022b). High-Efficiency Dye-Sensitized Solar Cells: A Comprehensive Review. Computational And Experimental Research In Materials And Renewable Energy, 5(1), 1. https://doi.org/10.19184/CERIMRE.V5I1.31475
  45. Wang, Y., Xia, Z., Liu, Y., & Zhou, H. (2015). Simulation of perovskite solar cells with inorganic hole transporting materials. 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015. https://doi.org/10.1109/PVSC.2015.7355717
  46. Yang, G., Tao, H., Qin, P., Ke, W., & Fang, G. (2016). Recent progress in electron transport layers for efficient perovskite solar cells. Journal of Materials Chemistry, 4(11), 3970–3990. https://doi.org/10.1039/C5TA09011C
  47. Zhao, Y., & Zhu, K. (2016). Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chemical Society Reviews, 45(3), 655–689. https://doi.org/10.1039/C4CS00458B

Last update:

No citation recorded.

Last update: 2024-10-11 21:41:42

No citation recorded.