skip to main content

Financial viability analysis for green hydrogen production opportunity from hydropower plant’s excess power in Indonesia

1Master Program of Business Administration, School of Business and Management Institut Teknologi Bandung, Jakarta, Indonesia

2Master Program of Business Administration, Hult International Business School, Cambridge, MA, Indonesia

3PT PLN Indonesia Power, Indonesia

Received: 8 May 2024; Revised: 27 Jun 2024; Accepted: 6 Jul 2024; Available online: 14 Jul 2024; Published: 1 Sep 2024.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The research presents a comprehensive analysis of the financial viability of producing green hydrogen from excess power generated by small hydropower plants in Indonesia. It highlights Indonesia’s commitment to increasing renewable energy sources to achieve net zero emissions by 2060 and the role of Perusahaan Listrik Negara (PLN) in this transition. The study examines the potential of utilizing dormant excess power from retroactive small hydropower plants to produce green hydrogen, which could significantly decarbonize hard-to-abate sectors and enhance energy security. The authors conducted a financial analysis using the NREL H2A Production Model to determine the optimal technical arrangement and financial simulation for green hydrogen production. The paper discusses various electrolyzer technologies, with a focus on alkaline water electrolyzers due to their high technology readiness level and low capital expenditure. It also explores the sensitivity of the levelized cost of hydrogen to different factors, particularly the cost of utilities. The findings suggest that green hydrogen production from small hydropower plants is economically feasible in Indonesia, with the potential to contribute to the global hydrogen market and support the country’s green circular economy. The study concludes that green hydrogen production using excess electricity from small hydropower plants is a viable method for decarbonization and offers scalability for future energy production in Indonesia, with the first initial step being as a green hydrogen and natural gas co-firing fuel mixing in gas turbines.
Fulltext View|Download
Keywords: Green hydrogen production; Hydropower plants; Excess power; Alkaline electrolyzer; LCOH; Financial viability analysis

Article Metrics:

  1. Abdin, Z. (2024). Bridging the energy future: The role and potential of hydrogen co-firing with natural gas. Journal of Cleaner Production, 436, 140724. https://doi.org/10.1016/j.jclepro.2024.140724
  2. Abidin, J. Z. (2023). Challenges in dealing with water pollution issues in the West Java island. Journal of Sustainability, Society, and Eco-Welfare, 1(1). https://doi.org/10.61511/jssew.v1i1.2023.137
  3. Accenture, & China Hydrogen Alliance. (2023). Green Hydrogen in China: A Roadmap for Progress. https://www.weforum.org/publications/green-hydrogen-in-china-a-roadmap-for-progress/
  4. ADB, & The World Bank. (2013). Downstream Impacts of Water Pollution in the Upper Citarum River, West Java, Indonesia: Economic Assessment of Interventions to Improve Water Quality. https://www.adb.org/publications/downstream-impacts-water-pollution-upper-citarum-river-west-java-indonesia
  5. Agora Industry and Umlaut. (2023). Levelised cost of hydrogen. https://static.agora-energiewende.de/fileadmin/Projekte/2022/2022-12-10_Trans4Real/A-EW_301_LCOH_WEB.pdf
  6. Alhuyi Nazari, M., Fahim Alavi, M., Salem, M., & Assad, M. E. H. (2022). Utilization of hydrogen in gas turbines: a comprehensive review. International Journal of Low-Carbon Technologies, 17, 513–519. https://doi.org/10.1093/ijlct/ctac025
  7. Andy. (2021). Fuel Cell Topics: Renewable Energy & Hydrogen Making. https://www.kewelltest.com/Fuel-Cell-Topics-Renewable-Energy-Hydrogen-Making-Kewell-Offers-Water-Electrolytic-Tank-Testing-id3926818.html
  8. Bamisile, O., Li, J., Huang, Q., Obiora, S., Ayambire, P., Zhang, Z., & Hu, W. (2020). Environmental impact of hydrogen production from Southwest China’s hydro power water abandonment control. International Journal of Hydrogen Energy, 45(46), 25587–25598. https://doi.org/10.1016/j.ijhydene.2020.06.289
  9. Blohm, M., & Dettner, F. (2023). Green hydrogen production: Integrating environmental and social criteria to ensure sustainability. Smart Energy, 11, 100112. https://doi.org/10.1016/j.segy.2023.100112
  10. Brilian, V., Jaelani, K., Mubarok, M., Ruliandi, D., & Firmansyah, W. (2022). Techno-Economic Study of Green Hydrogen Production Using Integrated Bottoming Organic Rankine Cycle and Electrolysis Systems in Ulubelu Geothermal Power Plant. 8th Indonesia International Geothermal Conference & Exhibition (IIGCE) 2022. Jakarta
  11. Buana, Y., Mursitama, T. N., Abdinagoro, S. B., & Pradipto, Y. D. (2023). Stakeholder engagement by power system experts of Indonesia electricity sector for sustainable energy transition. International Journal of Energy Sector Management, 17(3), 474–488. https://doi.org/10.1108/IJESM-05-2021-0021
  12. Buechler, E., Powell, S., Sun, T., Astier, N., Zanocco, C., Bolorinos, J., Flora, J., Boudet, H., & Rajagopal, R. (2022). Global changes in electricity consumption during COVID-19. IScience, 25(1), 103568. https://doi.org/10.1016/j.isci.2021.103568
  13. Cheng, W., & Lee, S. (2022). How Green Are the National Hydrogen Strategies? Sustainability, 14(3), 1930. https://doi.org/10.3390/su14031930
  14. Das, S., De, S., Dutta, R., & De, S. (2024). Multi-criteria decision-making for techno-economic and environmentally sustainable decentralized hybrid power and green hydrogen cogeneration system. Renewable and Sustainable Energy Reviews, 191, 114135. https://doi.org/10.1016/j.rser.2023.114135
  15. Enerdata. (2023). Electricity domestic consumption. World Energy & Climate Statistics. https://yearbook.enerdata.net/electricity/electricity-domestic-consumption-data.html
  16. Energy Sector Management Assistance Program (ESMAP), Organisation for Economic Co-operation and Development (OECD), Global Infrastructure Facility, & Hydrogen Council. (2024). Scaling Hydrogen Financing for Development. https://read.oecd.org/10.1787/0287b22e-en?format=pdf
  17. ESMAP, & The World Bank. (2017). Small hydro resource mapping in Indonesia : Small hydropower potential report. http://documents.worldbank.org/curated/en/315901506072186354/Small-hydropower-potential-report
  18. Fokeer, S., Bianco, E., Strohmaier, R., Sievernich, J., Melnikov, Y., Stamm, A., Heredia, A., & Nunez, A. (2024). Green Hydrogen For Sustainable Industrial Development: A Policy Toolkit For Developing Countries. https://doi.org/10.13140/RG.2.2.21621.14568
  19. Friedl, G., Reichelstein, S., Bach, A., Blaschke, M., & Kemmer, L. (2023). Applications of the levelized cost concept. Journal of Business Economics, 93(6), 1125–1148. https://doi.org/10.1007/s11573-023-01171-7
  20. GE Vernova. (2023, September). Hydrogen fueled gas turbines. GE Vernova. https://www.gevernova.com/gas-power/future-of-energy/hydrogen-fueled-gas-turbines
  21. Hafner, M., & Luciani, G. (Eds.). (2022). The Palgrave Handbook of International Energy Economics. Springer International Publishing. https://doi.org/10.1007/978-3-030-86884-0
  22. Handayani, K., Filatova, T., & Krozer, Y. (2019). The Vulnerability of the Power Sector to Climate Variability and Change: Evidence from Indonesia. Energies, 12(19), 3640. https://doi.org/10.3390/en12193640
  23. IEA. (2022). An Energy Sector Roadmap to Net Zero Emissions in Indonesia. https://www.iea.org/reports/an-energy-sector-roadmap-to-net-zero-emissions-in-indonesia
  24. IESR. (2023). Delivering Indonesia’s Power Sector Transition: Costs, Benefits, and Implications of Intervening the 13.8 GW Coal-fired Power Plants Project Pipeline of Indonesia’s State-owned Utility. https://iesr.or.id/en/pustaka/delivering-indonesias-power-sector-transition
  25. Indarto, A., Garniwa, I., Setiabudy, R., & Hudaya, C. (2017). Total cost of ownership analysis of 60 MVA 150/120 kV power transformer. 2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering, 291–295. https://doi.org/10.1109/QIR.2017.8168499
  26. IRENA. (2020). Green hydrogen cost reduction : scaling up electrolysers to meet the 1.50 C climate goal. International Renewable Energy Agency
  27. IRENA. (2022). Geopolitics of the energy transformation : the hydrogen factor. International Renewable Energy Agency. https://www.irena.org/publications/2022/Jan/Geopolitics-of-the-Energy-Transformation-Hydrogen
  28. Islam, P. A., & Febrian, R. (2020, October 27). What Is The History Of The First Time There Was Electricity In Indonesia? https://voi.id/en/memori/18081/
  29. Jaeger, H., & deBiasi, V. (2022, November 2). Needed: Electrolyzers Producing Cheap, Green, Hydrogen. Pequot Publishing Inc. https://gasturbineworld.com/electrolyzers-green-hydrogen/
  30. Jang, D., Kim, J., Kim, D., Han, W.-B., & Kang, S. (2022). Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Conversion and Management, 258, 115499. https://doi.org/10.1016/j.enconman.2022.115499
  31. Jovan, D. J., Dolanc, G., & Pregelj, B. (2021). Cogeneration of green hydrogen in a cascade hydropower plant. Energy Conversion and Management: X. https://api.semanticscholar.org/CorpusID:234891896
  32. Kawasaki. (2022, September 7). Hydrogen gas turbine offers promise of clean electricity. Nature Research Custom. https://www.nature.com/articles/d42473-022-00211-0
  33. KESDM. (2023a). Handbook of Energy & Economic Statistics of Indonesia 2023. https://www.esdm.go.id/id/publikasi/handbook-of-energy-economic-statistics-of-indonesia
  34. KESDM. (2023b). Strategi Hidrogen Nasional. https://ebtke.esdm.go.id/post/2023/12/15/3680/strategi.hydrogen.national
  35. Krishnan, S., Koning, V., Theodorus de Groot, M., de Groot, A., Mendoza, P. G., Junginger, M., & Kramer, G. J. (2023). Present and future cost of alkaline and PEM electrolyser stacks. International Journal of Hydrogen Energy, 48(83), 32313–32330. https://doi.org/10.1016/j.ijhydene.2023.05.031
  36. Laget, H., Griebel, P., Gooren, L., Hampp, F., Jouret, N., & Lammel, O. (2022). Demonstration of Natural Gas and Hydrogen Cocombustion in an Industrial Gas Turbine. Journal of Engineering for Gas Turbines and Power, 145(4), 41007. https://doi.org/10.1115/1.4056046
  37. Langer, J., Quist, J., & Blok, K. (2021). Review of Renewable Energy Potentials in Indonesia and Their Contribution to a 100% Renewable Electricity System. Energies, 14(21), 7033. https://doi.org/10.3390/en14217033
  38. Li, L., Feng, L., Manier, H., & Manier, M.-A. (2024). Life cycle optimization for hydrogen supply chain network design. International Journal of Hydrogen Energy, 52, 491–520. https://doi.org/10.1016/j.ijhydene.2022.03.219
  39. Maka, A. O. M., & Mehmood, M. (2024). Green hydrogen energy production: current status and potential. Clean Energy, 8(2), 1–7. https://doi.org/10.1093/ce/zkae012
  40. Manullang, E., & Sinaga, N. (2022). Potential and Challenges of Hydrogen Development as New Renewable Energy in Indonesia. R.E.M. (Rekayasa Energi Manufaktur) Jurnal. https://doi.org/10.21070/r.e.m.v7i2.1647
  41. Martín-Ortega, J. L., Chornet, J., Sebos, I., Akkermans, S., & López Blanco, M. J. (2024). Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation. Sustainability, 16(10), 4219. https://doi.org/10.3390/su16104219
  42. Miyamoto, K., Mhi, K. I., Kawakami, T., Nakamura, S., Tanimura, S., & Masada, J. (2018). Development Of Hydrogen And Natural Gas Co-Firing Gas Turbine. https://api.semanticscholar.org/CorpusID:263783210
  43. Murti, B., & Pratomo, S. A. (2022). Pemodelan Infrastruktur Hidrogen Untuk Aplikasi Fuel Cell Dan Dampaknya Terhadap Era Ekonomi Hidrogen Studi Kasus Di Kota Semarang. Jurnal Universal Technic, 1(1), 25–51. https://journal.unimar-amni.ac.id/index.php/UNITECH/article/download/19/20
  44. Novianto, D., Koerniawan, M. D., Munawir, M., & Sekartaji, D. (2022). Impact of lifestyle changes on home energy consumption during pandemic COVID-19 in Indonesia. Sustainable Cities and Society, 83, 103930. https://doi.org/10.1016/j.scs.2022.103930
  45. Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, & Sukatiman. (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development. Sustainability, 15(3), 2342. https://doi.org/10.3390/su15032342
  46. Penev, M., Saur, G., Hunter, C., & Zuboy, J. (2018). H2A: Hydrogen production model: Version 3.2018 user guide (draft). User Guide i, US Department of Energy, United States of America
  47. PLN. (2022). 2022 Annual Report: Leading The Way to Empower The Nation. https://web.pln.co.id/statics/uploads/2023/06/Laporan-Tahunan-2022_Final_3005_Med-Res.pdf
  48. PLN. (2023). 2022 Sustainability Report: Strengthening the Determination Towards a Sustainable Company. https://web.pln.co.id/statics/uploads/2023/09/SR-PLN-2022_High.pdf
  49. PLN Indonesia Power. (2021). Virtual Museum Hydropower Plant. CSR Hero. https://csrhero.co.id/virtual-museum
  50. Prawitasari, A., Nurliyanti, V., Putri Utami, D. M., Nurdiana, E., Akhmad, K., Aji, P., Syafei, S., Ifanda, I., & Mulyana, I. G. (2024). A systematic decision-making approach to optimizing microgrid energy sources in rural areas through diesel generator operation and techno-economic analysis: A case study of Baron Technopark in Indonesia. International Journal of Renewable Energy Development, 13(2), 315–328. https://doi.org/10.61435/ijred.2024.59560
  51. Rahman, A., Richards, R., Dargusch, P., & Wadley, D. (2023). Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization. Renewable Energy, 202, 1305–1323. https://doi.org/10.1016/j.renene.2022.11.051
  52. Rakhmindyarto, R. (2020). Climate Policies in Indonesia’s Development Agenda: Why a Carbon Tax is Marginalised. Proceeding of LPPM UPN “VETERAN” Yogyakarta Conference Series 2020- Political and Social Science Series, 1–8. https://doi.org/10.31098/pss.v1i1.83
  53. Ratnaningsih, D., Nasution, E. L., Wardhani, N. T., Pitalokasari, O. D., & Fauzi, R. (2019). Water pollution trends in Ciliwung River based on water quality parameters. IOP Conference Series: Earth and Environmental Science, 407(1), 012006. https://doi.org/10.1088/1755-1315/407/1/012006
  54. Reksten, A. H., Thomassen, M. S., Møller-Holst, S., & Sundseth, K. (2022). Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development. International Journal of Hydrogen Energy, 47(90), 38106–38113. https://doi.org/10.1016/j.ijhydene.2022.08.306
  55. Rey, J., Segura, F., & Andújar, J. M. (2023). Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework. Energies, 16(17), 6222. https://doi.org/10.3390/en16176222
  56. Rospriandana, N., Burke, P. J., Suryani, A., Mubarok, M. H., & Pangestu, M. A. (2023). Over a century of small hydropower projects in Indonesia: a historical review. Energy, Sustainability and Society, 13(1), 30. https://doi.org/10.1186/s13705-023-00408-1
  57. Sari, D. P., & Pinassang, J. L. (2023). Examining the Impact of COVID-19 in Indonesia through Household Electricity Consumption and Modern Lifestyle. Civil Engineering and Architecture, 11(2), 1032–1047. https://doi.org/10.13189/cea.2023.110236
  58. Sebos, I., Nydrioti, I., Katsiardi, P., & Assimacopoulos, D. (2023). Stakeholder perceptions on climate change impacts and adaptation actions in Greece. Euro-Mediterranean Journal for Environmental Integration, 8(4), 777–793. https://doi.org/10.1007/s41207-023-00396-w
  59. Shahabuddin, M., Rhamdhani, M. A., & Brooks, G. A. (2023). Technoeconomic Analysis for Green Hydrogen in Terms of Production, Compression, Transportation and Storage Considering the Australian Perspective. Processes, 11(7), 2196. https://doi.org/10.3390/pr11072196
  60. Shin, H., Jang, D., Lee, S., Cho, H.-S., Kim, K.-H., & Kang, S. (2023). Techno-economic evaluation of green hydrogen production with low-temperature water electrolysis technologies directly coupled with renewable power sources. Energy Conversion and Management, 286, 117083. https://doi.org/10.1016/j.enconman.2023.117083
  61. Sukmara, R. B., A., & Bachtiar, R. (2024). Understanding the stakeholders’ interests and role toward climate change adaptation (case study of Indonesia). International Journal of Disaster Resilience in the Built Environment, ahead-of-print(ahead-of-print). https://doi.org/10.1108/IJDRBE-02-2023-0036
  62. Sulistyo, H. D. D., Setiawan, E. A., Purwanto, W. W., & Kaharudin, D. (2023). Power to Gas-Hydrogen Industry Development Based on Floating PV in Indonesia. 2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE), 515–520. https://doi.org/10.1109/CPEEE56777.2023.10217578
  63. Sunitiyoso, Y., Mahardi, J. P., Anggoro, Y., & Wicaksono, A. (2020). New and renewable energy resources in the Indonesian electricity sector: a systems thinking approach. International Journal of Energy Sector Management, 14(6), 1381–1403. https://doi.org/10.1108/IJESM-11-2019-0019
  64. Tambunan, H. B., Hakam, D. F., Prahastono, I., Pharmatrisanti, A., Purnomoadi, A. P., Aisyah, S., Wicaksono, Y., & Sandy, I. G. R. (2020). The Challenges and Opportunities of Renewable Energy Source (RES) Penetration in Indonesia: Case Study of Java-Bali Power System. Energies, 13(22). https://doi.org/10.3390/en13225903
  65. The World Bank Group. (2023). Indonesia Country Climate and Development Report. https://www.worldbank.org/en/country/indonesia/publication/indonesia-country-climate-and-development-report
  66. The World Bank Group, & Asian Development Bank. (2021). Climate Risk Profile: Indonesia. https://www.adb.org/publications/climate-risk-country-profile-indonesia
  67. U.S. Department of Energy. (2024). Hydrogen and Fuel Cell Technologies Office Multi-Year Program Plan. https://www.energy.gov/eere/fuelcells/hydrogen-and-fuel-cell-technologies-office-multi-year-program-plan
  68. Wade, F., Chailan, A., Roche, R., Bertrand, V., & Paire, D. (2023). Sizing of an Integrated Power Supply System with an Electrolyzer and a Hydrogen-Fueled Gas Turbine. 2023 IEEE Belgrade PowerTech, 1–6. https://doi.org/10.1109/PowerTech55446.2023.10202861
  69. Xu, D., Liu, Z., Shan, R., Weng, H., & Zhang, H. (2023). How a Grid Company Could Enter the Hydrogen Industry through a New Business Model: A Case Study in China. Sustainability, 15(5). https://doi.org/10.3390/su15054417
  70. Zahra, N. A. (2022). Green Hydrogen Energy Technology for Zero Carbon Emission Realization in Indonesia. The International Journal of Business Management and Technology, 6(1). https://theijbmt.com/archive/0943/2079601627.pdf
  71. Zun, M. T., & McLellan, B. C. (2023). Cost Projection of Global Green Hydrogen Production Scenarios. Hydrogen, 4(4), 932–960. https://doi.org/10.3390/hydrogen4040055
  72. Zwickl-Bernhard, S., & Auer, H. (2022). Green hydrogen from hydropower: A non-cooperative modeling approach assessing the profitability gap and future business cases. Energy Strategy Reviews, 43, 100912. https://doi.org/10.1016/j.esr.2022.100912

Last update:

No citation recorded.

Last update: 2024-10-11 17:20:37

No citation recorded.