1School of Arts, Zhengzhou Technology and Business University, Zhengzhou, 451400, China
2Art and Design, Zhengzhou Electronic & Information Engineering School, Zhengzhou, 450007, China
BibTex Citation Data :
@article{IJRED60308, author = {Xiaohong Wu and Yingzhi Peng}, title = {Decomposition based multi-objective evolutionary algorithm for energy-saving design of homestay buildings}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {5}, year = {2024}, keywords = {MOEAD;Homestay buildings; Energy-saving design; Sa-MOOSO; Multi-objective optimization}, abstract = { To improve the prediction accuracy of energy-saving design for homestay buildings, a multi-objective optimization model is studied. A model of multi-objective optimization algorithm for energy efficiency design of home stay buildings based on decomposition multi-objective evolutionary algorithm is proposed. Decomposition based multi-objective evolutionary algorithm is selected. To select the preliminary algorithm for achieving energy-saving design of homestay buildings, it divides the objectives into algorithm determination and model construction and uses multi-objective optimization algorithms to solve the proposed optimization model. The validation results show that the minimum discomfort time calculated using the non-dominated sorting genetic algorithm is 555.30 and the energy consumption is 7.68, while the minimum discomfort time calculated using the non-dominated sorting genetic algorithm method is 896 and the energy consumption is 8.92. With alternative model, the speed of multi-objective Evolutionary algorithm is the fastest, reaching 6105.44 seconds, which is 68.80% lower than the proposed method. With the help of substitutes, the computational speed of the multi-objective particle swarm optimization algorithm has been greatly improved. Its computational speed has reached 1217.231 seconds, while the fastest multi-objective particle swarm optimization algorithm among the four comparison methods is only 3868.591 seconds. Although the individual improvement is not significant, the overall optimization is still considerable and has strategic foresight in the decision-making plan of decision-makers. }, pages = {982--994} doi = {10.61435/ijred.2024.60308}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60308} }
Refworks Citation Data :
To improve the prediction accuracy of energy-saving design for homestay buildings, a multi-objective optimization model is studied. A model of multi-objective optimization algorithm for energy efficiency design of home stay buildings based on decomposition multi-objective evolutionary algorithm is proposed. Decomposition based multi-objective evolutionary algorithm is selected. To select the preliminary algorithm for achieving energy-saving design of homestay buildings, it divides the objectives into algorithm determination and model construction and uses multi-objective optimization algorithms to solve the proposed optimization model. The validation results show that the minimum discomfort time calculated using the non-dominated sorting genetic algorithm is 555.30 and the energy consumption is 7.68, while the minimum discomfort time calculated using the non-dominated sorting genetic algorithm method is 896 and the energy consumption is 8.92. With alternative model, the speed of multi-objective Evolutionary algorithm is the fastest, reaching 6105.44 seconds, which is 68.80% lower than the proposed method. With the help of substitutes, the computational speed of the multi-objective particle swarm optimization algorithm has been greatly improved. Its computational speed has reached 1217.231 seconds, while the fastest multi-objective particle swarm optimization algorithm among the four comparison methods is only 3868.591 seconds. Although the individual improvement is not significant, the overall optimization is still considerable and has strategic foresight in the decision-making plan of decision-makers.
Article Metrics:
Last update:
Last update: 2024-10-11 14:45:54
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.