skip to main content

A dry cold sintering to Ta doped-lithium lanthanum zirconate solid electrolyte for all-solid-state lithium metal battery

1Chemistry Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir Sutami 36 A Kentingan 57126, Surakarta, Indonesia

2Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea

3R&D Refinery - PT. PERTAMINA (Persero), Jl. Raya Bekasi Km. 20 Pulogadung Jakarta Timur 13920, Indonesia

Received: 16 May 2024; Revised: 28 Jul 2024; Accepted: 2 Aug 2024; Available online: 12 Aug 2024; Published: 1 Sep 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Solid electrolyte is the essential part in all-solid-state battery (ASSB), in which the sintering step is vital to get a dense and high ionic conductivity. However, Li-loss frequently occurs at a high temperature, causing ionic conductivity to drop. This research investigated a dry-cold sintering process (dry-CSP) to Ta doped-LLZO (LLZTO), in which the LLZTO powder was pressed by cold isostatic pressing (CIP) at 40 MPa without solvent addition and then heated at 300oC for 2h. XRD analysis found that LLZTO300C40P remains crystallized in a single cubic with ionic conductivity of (3.02 0.53) x 10-5 Scm-1, which is higher than another result in Al doped-LLZO by CSP uniaxial pressing and with moistened-solvent (wet-CSP). The feasibility was tested by preparing a coin cell with a LiCoO2 cathode and Li metal anode. Cyclic voltammogram of the LCO-LLZTO300C40P-Li ASSB provides a high current density representing a higher electrochemical reaction rate inside the full cell. The battery ran well with an initial charging capacity of 88 mAh/g, and a discharge capacity of 50 mAh/g, providing 56.8 % Coulombic Efficiency. An interface engineering between electrode-solid electrolyte is essential to develop the ASSB performance.

Fulltext View|Download
Keywords: Dry cold sintering; lithium lanthanum zirconate; Tantalum doped-LLZO; solid electrolyte; all solid state-lithium- ion battery.

Article Metrics:

  1. Abreu-Sepúlveda, M., Williams, D.E., Huq, A., Dhital, C., Li, Y., Paranthaman, M.P., Zaghib, K., Manivannan, A., 2016. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes. Ionics (Kiel). 22, 317–325. https://doi.org/10.1007/s11581-015-1556-2
  2. Abreu-Sepúlveda, M., Williams, D.E., Huq, A., Dhital, C., Li, Y., Paranthaman, M.P., Zaghib, K., Manivannan, A., 2015. Synthesis and characterization of substituted garnet and perovskite-based lithium-ion conducting solid electrolytes. Ionics (Kiel). 22, 317–325. https://doi.org/10.1007/s11581-015-1556-2
  3. Afyon, S., Kravchyk, K.., Wang, S., Broek, J., van den, Hänsel, C. Kovalenko, M. V, Rupp, J.L.M., 2019. Building Better All-Solid-State Batteries with Li-Garnet Solid Electrolytes and Metalloid Anodes. J. Mater. Chem. A 7, 21299–21308
  4. Arifah, S.K., Nugrahaningtyas, K.D., Hidayat, Y., Kim, H., Lee, Y., Rahmawati, F., 2022. Synthesis of a low Li to Zr mole ratio of lithium lanthanum zirconate Li0.5xLa0.5xZr1−xO12−δ. J. Aust. Ceram. Soc. https://doi.org/10.1007/s41779-022-00782-7
  5. Awaka, J., Takashima, A., Kataoka, K., Kijima, N., Idemoto, Y., Akimoto, J., 2011. Crystal structure of fast lithium-ion-conducting cubic Li 7La3Zr2O12. Chem. Lett. 40, 60–62. https://doi.org/10.1246/cl.2011.60
  6. Barai, P., Fister, T., Liang, Y., Libera, J., Wolfman, M., Wang, X., Garcia, J., Iddir, H., Srinivasan, V., 2021. Investigating the Calcination and Sintering of Li7La3Zr2O12(LLZO) Solid Electrolytes Using Operando Synchrotron X-ray Characterization and Mesoscale Modeling. Chem. Mater. 33, 4337–4352. https://doi.org/10.1021/acs.chemmater.0c04393
  7. Batchelor-McAuley, C., 2023. Defining the onset potential. Curr. Opin. Electrochem. 37, 101176. https://doi.org/10.1016/j.coelec.2022.101176
  8. Concept, 2023. axial or isostatic pressing. URL http://www.zirconiaconcept.it/en/axial-or-isostatic-pressing
  9. Deviannapoorani, C., Ramakumar, S., Janani, N., Murugan, R., 2015. Synthesis of lithium garnets from La2Zr2O7 pyrochlore. Solid State Ionics 283, 123–130. https://doi.org/10.1016/j.ssi.2015.10.006
  10. Funahashi, S., Guo, J., Guo, H., Wang, K., Amanda L. Baker, Kosuke Shiratsuyu, C.A.R., 2017. Demonstration of the cold sintering process study for the densification and grain growth of ZnO ceramics. J. Am. Ceram. Soc. 100, 546–553
  11. Galotta, A., Sglavo, V.M., 2021. The cold sintering process: A review on processing features, densification mechanisms and perspectives. J. Eur. Ceram. Soc. 41, 1–17. https://doi.org/10.1016/j.jeurceramsoc.2021.09.024
  12. García-Sánchez, M.F., M’Peko, J.C., Ruiz-Salvador, A.R., Rodríguez-Gattorno, G., Echevarría, Y., Fernández-Gutierrez, F., Delgado, A., 2003. An elementary picture of dielectric spectroscopy in solids: Physical basis. J. Chem. Educ. 80, 1062–1073. https://doi.org/10.1021/ed080p1062
  13. Guo, H., Baker, A., Guo, J., Randall, C.A., 2016. Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process. ACS Nano 10, 10606–10614
  14. Guo, H., Shen, F., Guo, W., Zeng, D., Yin, Y., Han, X., 2021. LiCoO2/Li6.75La3Zr1.75Nb0.25O12 interface modification enables all-solid-state battery. Mater. Lett. 301, 130302. https://doi.org/10.1016/j.matlet.2021.130302
  15. Guo, J., Floyd, R., Lowum, S., Maria, J.-P., DBeauvoir, T.., Seo, J.-H., Randall, C.., 2019. Cold Sintering: Progress, Challenges, and Future Opportunities. Annu. Rev. Mater. Res. 49, 275–295
  16. Guo, J., Guo, H., Baker, A.L., Lanagan, M.T., Kupp, E.R., Messing, G.L., Randall, C.A., 2016. Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics. Angew. Chemie - Int. Ed. 55, 11457–11461
  17. Hu, Z; Liu, H; Ruan, H. B.; Zhang, L., 2016. High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction. Ceram. Int. 42. https://doi.org/10.1016/j.ceramint.2016.04.149
  18. Huang, X., Song, Z., Xiu, T., Badding, M.E., Wen, Z., 2019. Sintering , micro-structure and Li + conductivity of Li 7 − x La 3 Zr 2 − x Nb x O 12 / MgO ( x = 0 . 2 – 0 . 7 ) Li-Garnet composite ceramics. Ceram. Int. 45, 56–63. https://doi.org/10.1016/j.ceramint.2018.09.133
  19. Li, J., Liu, Z., Ma, W., Dong, H., Zhang, K., Wang, R., 2019. Low-temperature synthesis of cubic phase Li7La3Zr2O12 via sol-gel and ball milling induced phase transition. J. Power Sources 412, 189–196. https://doi.org/10.1016/j.jpowsour.2018.11.040
  20. Ma, C., Chi, M., 2016. Novel solid electrolytes for li-ion batteries: A perspective from electron microscopy studies. Front. Energy Res. 4, 1–6. https://doi.org/10.3389/fenrg.2016.00023
  21. Maria, J.P., Kang, X., Floyd, R.D., Dickey, E.C., Guo, H., Guo, J., Baker, A., Funihashi, S., Randall, C.A., 2017. Cold sintering: Current status and prospects. J. Mater. Res. 32, 3205–3218. https://doi.org/10.1557/jmr.2017.262
  22. Martin, P., Carlos Pico, L.., Veiga, L., 2007. Li(4−x)/3Ti(5−2x)/3CrxO4 (0 ≤ x ≤ 0.9) spinels: New negatives for lithium batteries. Solid State Sci. 9, 521–526. https://doi.org/10.1016/j.solidstatesciences.2007.03.023
  23. Murugan, R., Thangadurai, V., Weppner, W., 2008. Lattice Parameter and Sintering Temperature Dependence of Bulk and Grain-Boundary Conduction of Garnet-like Solid Li-Electrolytes. J. Electrochem. Soc. 155, A90. https://doi.org/10.1149/1.2800764
  24. Nishihora, R.K., Rachadel, P.L., Gabriela, M., Quadri, N., 2018. Journal of the European Ceramic Society Manufacturing porous ceramic materials by tape casting — A review. J. Eur. Ceram. Soc. 38, 988–1001. https://doi.org/10.1016/j.jeurceramsoc.2017.11.047
  25. Padarti, J.K., Jupalli, T.T., Hirayama, C., Senna, M., Kawaguchi, T., Sakamoto, N., Wakiya, N., Suzuki, H., 2018. Low-temperature processing of Garnet-type ion conductive cubic Li7La3Zr2O12 powders for high performance all solid-type Li-ion batteries. J. Taiwan Inst. Chem. Eng. 90. https://doi.org/10.1016/j.jtice.2018.02.021
  26. Pazhaniswamy, S., Joshi, S.A., Hou, H., Parameswaran, A.K., Agarwal, S., 2023. Hybrid Polymer Electrolyte Encased Cathode Particles Interface‐Based Core–Shell Structure for High‐Performance Room Temperature All‐Solid‐State Batteries. Adv. Energy Mater. 13, 2202981. https://doi.org/10.1002/aenm.202202981
  27. Rahmawati, F., Musyarofah, B., Nugrahaningtyas, K.D., Prasetyo, A., Suendo, V., Haeruddin, H., Handaka, M.F.A., Nilasari, H., Nursukatmo, H., 2021. A different zirconia precursor for Li7La3Zr2O12 synthesis. J. Mater. Res. Technol. 15, 2725–2734. https://doi.org/10.1016/j.jmrt.2021.09.064
  28. Rahmawati, F., Prijamboedi, B., Soepriyanto, S., Ismunandar, 2012. SOFC composite electrolyte based on LSGM-8282 and zirconia or doped zirconia from zircon concentrate. Int. J. Miner. Metall. Mater. 19, 863–871. https://doi.org/10.1007/s12613-012-0640-0
  29. Rahmawati, F., Zuhrini, N., Nugrahaningtyas, K.D., Arifah, S.K., 2019. Yttria-stabilized zirconia (YSZ) film produced from an aqueous nano-YSZ slurry: preparation and characterization. J. Mater. Res. Technol. 1–10. https://doi.org/10.1016/j.jmrt.2019.07.054
  30. Raju, M.M., Altayran, F., Johnson, M., Wang, D., Zhang, Q., 2021. Crystal Structure and Preparation of Li7La3Zr2O12 (LLZO) Solid-State Electrolyte and Doping Impacts on the Conductivity: An Overview. Electrochem. https://doi.org/10.3390/electrochem2030026
  31. Seo, J.-H., Nakaya, H., Takeuchi, Y., Fan, Z., Hikosaka, H., Rajagopalan, R., Gomez, E.., Iwasaki, M., Randal, C.., 2020. Broad Temperature Dependence, High Conductivity, and Structure-Property Relations of Cold Sintering of LLZO-based Composite Electrolytes. J. Eur. Ceram. Soc. 40, 6241–6248. https://doi.org/10.1016/j.jeurceramsoc.2020.06.050
  32. Shin, D.., Oh, K., Kim, K.., Park, K.-Y., Lee, B., Lee, Y.-G., Kang, K., 2015. Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction. Sci. Rep. 18053
  33. Wang, X., Wang, J., Li, F., Zhu, F., Ma, C., 2020. Influence of cold sintering process on the structure and properties of garnet-type solid electrolytes. Ceram. Int. 46, 18544–18550. https://doi.org/10.1016/j.ceramint.2020.04.160
  34. Xie, H., Alonso, J.A., Li, Y., Fernández-Díaz, M.T., Goodenough, J.B., 2011. Lithium Distribution in Aluminum-Free Cubic Li7La3Zr2O12. Chem. Mater. 23, 3587–3589. https://doi.org/doi.org/10.1021/cm201671k
  35. Xu, B., Duan, H., Xia, W., Guo, Y., Kang, H., Li, H., Liu, H., 2016. Multistep sintering to synthesize fast lithium garnets. J. Power Sources 302, 291–297. https://doi.org/10.1016/j.jpowsour.2015.10.084
  36. Xue, W., Yang, Y., Yang, Q., Liu, Y., Wang, L., Chen, C., Cheng, R., 2018. The effect of sintering process on lithium ionic conductivity of Li6.4Al0.2La3Zr2O12 garnet produced by solid-state synthesis. RSC Adv. 8, 13083–13088. https://doi.org/10.1039/c8ra01329b
  37. Yang, L., Dai, Q., Liu, L., Shao, D., Luo, K., Jamil, S., Liu, H., 2020. Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram. Int. https://doi.org/10.1016/j.ceramint.2020.01.106
  38. Yoon, S.A., Oh, N.R., Yoo, A.R., Lee, H.G., Lee, H.C., 2017. Preparation and Characterization of Ta-Substituted Li7La3Zr2-xO12 Garnet Solid Electrolyte by Sol-Gel Processing. J. Korean Ceram. Soc. 54, 278–284
  39. Zhang, H., Liu, Y., Wang, T., Yang, Y., Shi, S., Yang, G., 2016. Li2ZrO3-coated Li4Ti5O12 with nanoscale interface for high performance lithium-ion batteries. Appl. Surf. Sci. 368, 56–62. https://doi.org/10.1016/j.apsusc.2016.01.244
  40. Zhang, X., Fergus, J., 2017. Phase Content and Conductivity of Aluminum- and Tantalum-Doped Garnet-Type Lithium Lanthanum Zirconate Solid Electrolyte Materials. ECS Trans. 77, 509–516. https://doi.org/10.1149/07711.0509ecst
  41. Zhang, X., Oh, T.-S., Fergus, J.W., 2019. Densification of Ta-Doped Garnet-Type Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 Solid Electrolyte Materials by Sintering in a Lithium-Rich Air Atmosphere . J. Electrochem. Soc. 166, A3753–A3759. https://doi.org/10.1149/2.1031915jes
  42. Zhang, Y., Deng, J., Hu, D., Chen, F., Shen, Q., 2019. Electrochimica Acta Synergistic regulation of garnet-type Ta-doped Li 7 La 3 Zr 2 O 12 solid electrolyte by Li þ concentration and Li þ transport channel size. Electrochim. Acta 296, 823–829. https://doi.org/10.1016/j.electacta.2018.11.136

Last update:

No citation recorded.

Last update: 2024-10-12 06:02:11

No citation recorded.