skip to main content

Design and evaluation of a standalone electric vehicles charging station for a university campus in Argentina

1Centro de Investigación y Transferencia de Rafaela CONICET-UNRaf, Rafaela, Argentina

2Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina

Received: 27 May 2024; Revised: 8 Jul 2024; Accepted: 6 Oct 2024; Available online: 9 Oct 2024; Published: 1 Nov 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The increasing popularity of electric vehicles in recent years has led to a growing demand for charging stations. In this context, universities are an ideal setting for their installation, as they have a large number of students, professors, and staff who could benefit from them and, at the same time, it serves as teaching material to raise awareness in the use of renewable energy. This work presents the design and proposal of an electric vehicle charging station for the campus of the Universidad Nacional de Rafaela (UNRaf). The station will be located in an area of the campus where the construction of more buildings and sport facilities is planned. This area will not be connected to the electrical grid and instead, will have an energy storage system to guarantee supply. The station will have the capacity to simultaneously charge 4 bicycles and 2 light electric vehicles, with an average energy demand of 0.786 kWh per hour. Homer Pro software was used for the calculations. The most economically viable option was a 100% renewable solution powered only by solar energy. It is expected to consist of a 15-kW solar system that will produce 22,922 kWh/year and a bank of 30 batteries of 3 kWh plus a single battery of 1 kWh. The installation of the electric vehicle charging station on the UNRaf campus will contribute to promoting the adoption of sustainable transportation, which will help reduce greenhouse gas emissions without using the public power grid.
Fulltext View|Download
Keywords: HOMER Pro; Isolated Microgrid; Photovoltaic Panels; Renewable Energies; Solar Energy; Sustainable Development.
Funding: Universidad Nacional de Rafaela

Article Metrics:

  1. Abdelbaki, A., Lorenzetti, H., Leiva, E., & Rodríguez, C. (2019). Estudio Técnico-Económico de Sistemas Híbridos Basados en Hidrógeno para una Población Aislada de la Patagonia Argentina. Revista Tecnología Y Ciencia, (25), 16–22. https://rtyc.utn.edu.ar/index.php/rtyc/article/view/462
  2. Akita, N., Ohe, Y., Araki, S., Yokohari, M., Terada, T., & Bolthouse, J. (2020). Managing conflicts with local communities over the introduction of renewable energy: The solar-rush experience in Japan. Land, 9(9), 290. https://doi.org/10.3390/land9090290
  3. Al Wahedi, A., & Bicer, Y. (2022). Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar. Energy, 243, 123008. https://doi.org/10.1016/j.energy.2021.123008
  4. Apribowo, C. H. B. et al. (2021). An Optimum Design and Economic Analysis of Renewable PV-Standalone Power Plant for Electric Vehicle Charging Station in Indonesia. IOP Conf. Ser.: Mater. Sci. Eng., 1096, 012084. https://doi.org/10.1088/1757-899X/1096/1/012084
  5. Arabzadeh Saheli, M., Fazelpour, F., Soltani, N., & Rosen, M. A. (2019). Performance analysis of a photovoltaic/wind/diesel hybrid power generation system for domestic utilization in Winnipeg, Manitoba, Canada. Environmental Progress & Sustainable Energy, 38(2), 548–562. https://doi.org /10.1002/ep.12939
  6. Argentina.gob.ar. (n.d.). Argentina.gob.ar. Retrieved August 21, 2024, from https://www.argentina.gob.ar/normativa/nacional/decreto-26-2019-318584/texto
  7. Banco Argentino de Desarrollo (2019). Fondo Fiduciario para el Desarrollo de Energías Renovables. https://www.bice.com.ar/foder/
  8. Bansal, S., Zong, Y., You, S., Mihet-Popa, L., & Xiao, J. (2020). Technical and economic analysis of one-stop charging stations for battery and fuel cell EV with renewable energy sources. Energies, 13(11), 2855. https://doi.org/10.3390/en13112855
  9. Baruj, G., Dulcich, F., Porta, F., & Ubogui, M. (2021). La transición hacia la electromovilidad: panorama general y perspectivas para la industria argentina (Documentos de Trabajo del CCE N° 5). Consejo para el Cambio Estructural - Ministerio de Desarrollo Productivo de la Nación
  10. Bellini, M., Bonini, M. P., Dallo, M., Garreta, F., Navntoft, C., & Vejrup, P. (2005). Mapa de recursos energéticos alternativos de la República Argentina. Primera versión, aprovechamiento de energía eólica y solar. Avances en Energías Renovables y Medio Ambiente, 9. https://sedici.unlp.edu.ar/handle/10915/83072
  11. Bitencourt, L., Dias, B., Soares, T., Borba, B., Quirós-Tortós, J., & Costa, V. (2023). Understanding business models for the adoption of electric vehicles and charging stations: Challenges and opportunities in Brazil. IEEE Access, 11, 63149-63166. https://doi,.org/10.1109/ACCESS.2023.3287388
  12. Boddapati, V., Rakesh Kumar, A., Arul Daniel, S., Sanjeevikumar Padmanaban. (2022). Design and prospective assessment of a hybrid energy-based electric vehicle charging station. Sustainable Energy Technologies and Assessments, 53, 102389. https://doi.org/10.1016/j.seta.2022.102389
  13. Boletín Oficial República Argentina - MINISTERIO DE TRANSPORTE - Decreto 32/2018. (n.d.). Gob.ar. Retrieved August 21, 2024, from https://www.boletinoficial.gob.ar/detalleAviso/primera/177435/20180111
  14. Brown, Abby, Jeff Cappellucci, Alexia Heinrich, and Emma Cost. (2024). Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Fourth Quarter 2023. Golden, CO: National Renewable Energy Laboratory. NREL/TP-540089108. www.nrel.gov/docs/fy24osti/89108.pdf
  15. Çetinbaş, İ., Tamyürek, B., & Demirtaş, M. (2019). Design, Analysis and Optimization of a Hybrid Microgrid System Using HOMER Software: Eskişehir Osmangazi University Example. International Journal of Renewable Energy Development, 8(1), 65-79. https://doi.org/10.14710/ijred.8.1.65-79
  16. Chiacchiera, E., Donolo, P. D., Lifschitz, A., Pezzani, C. M., De Angelo, C. H. (2023). Impact of the carbon tax on the economic viability of energy efficiency projects in Argentina in 2023. XX Workshop on Information Processing and Control (RPIC), Oberá, Argentina
  17. Corti, F., Iacono, S. D., Astolfi, D., Pasetti, M., Vasile, A., Reatti, A., & Flammini, A. (2024). A comprehensive review of charging infrastructure for Electric Micromobility Vehicles: Technologies and challenges. Energy Reports, 12, 545–567. https://doi.org/10.1016/j.egyr.2024.06.026
  18. Das, T. K. (2024). Assessment of grid-integrated electric vehicle charging station based on solar-wind hybrid: A case study of coastal cities. Alexandria Engineering Journal, 103, 288–312. https://doi.org/10.1016/j.aej.2024.05.103
  19. Dear, M. (1992). Understanding and overcoming the NIMBY syndrome. Journal of the American Planning Association. American Planning Association, 58(3), 288–300. https://doi.org/10.1080/01944369208975808
  20. de Luca, S., Storani, F., Bruno, F., and Di Pace, R. (2024). Adoption of electric vehicles by young adults in an emerging market: a case study from Argentina. Transportation Planning and Technology, 47(2), 226-257. https://doi.org/10.1080/03081060.2023.2265362
  21. Diyoke, C., Egwuagu, M. O., Onah, T. O., Ugwu, K. C., & Dim, E. C. (2023). Comparison of the Grid and Off-Grid Hybrid Power Systems for Application in University Buildings in Nigeria. International Journal of Renewable Energy Development, 12(2), 348-365. https://doi.org/10.14710/ijred.2023.49814
  22. Dulcich, F., Porta, F., Ubogui, M., & Baruj, G. (2022). The transition to electric mobility: opportunities for the automotive value chain in Argentina. International Journal of Automotive Technology and Management, 22(3), 374. https://doi.org/10.1504/ijatm.2022.124829
  23. Ebenezer, N., et al. (2021). Electromobility in the Global South: An equitable transition toward road passenger transport decarbonization. Sustainable Mobility for All Partnership and the Climate Compatible Growth (CCG) Programme
  24. Ekren, O., Hakan Canbaz, C., & Güvel, Ç. B. (2021). Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. Journal of Cleaner Production, 279(123615), 123615. https://doi.org/10.1016/j.jclepro.2020.123615
  25. Estadística del Informe Síntesis del MEM. (n.d.). Cammesa.com. Retrieved August 19, 2024, from https://cammesaweb.cammesa.com/estadistica-informe-sintesis-mem/
  26. Etukudoh, E. A., Hamdan, A., Ilojianya, V. I., Daudu, C. D., & Fabuyide, A. (2024). Electric vehicle charging infrastructure: A comparative review in Canada, USA, and Africa. Engineering Science & Technology Journal, 5(1), 245–258. https://doi.org/10.51594/estj/v5i1.747
  27. Falchetta, G., & Noussan, M. (2021). Electric vehicle charging network in Europe: An accessibility and deployment trends analysis. Transportation Research Part D: Transport and Environment, 94, 102813. https://doi.org/10.1016/j.trd.2021.102813
  28. Ferreira, M. F., Freitas, M. A. V., da Silva, N. F., da Silva, A. F., & Paz, L. R. L. da. (2020). Insertion of photovoltaic solar systems in technological education institutions in Brazil: Teacher perceptions concerning contributions towards sustainable development. Sustainability, 12(4), 1292. https://doi.org/10.3390/su12041292
  29. Filote, C., Felseghi, R.-A., Raboaca, M. S., & Aşchilean, I. (2020). Environmental impact assessment of green energy systems for power supply of electric vehicle charging station. International Journal of Energy Research, 44(13), 10471–10494. https://doi,.org/10.1002/er.5678
  30. Gicha, B. B., Tufa, L. T., & Lee, J. (2024). The electric vehicle revolution in Sub-Saharan Africa: Trends, challenges, and opportunities. Energy Strategy Reviews, 53, 101384
  31. Gismondi, A. (2023). Argentina puede liderar la transición energética hacia un futuro verde. Ámbito Financiero. https://www.ambito.com/anuario-2023/argentina-puede-liderar-la-transicion-energetica-un-futuro-verde-n5895993. Accessed on 19 January 2024
  32. Gobierno de la República Argentina (2016). Renovar. Ministerio de Economía. https://www.argentina.gob.ar/economia/energia/energia-electrica/renovables/renovar
  33. Grupo Banco Mundial. (2022). Informe sobre Clima y Desarrollo de los Países: Argentina. Grupo Banco Mundial. https://www.bancomundial.org/es/programs/lac-green-growth-leading-the-change-we-need/argentina
  34. Hafez, O., & Bhattacharya, K. (2017). Optimal design of electric vehicle charging stations considering various energy resources. Renewable Energy, 107, 576–589. https://doi.org/10.1016/j.renene.2017.01.066
  35. HOMER PRO® (2006). Microgrid Power System Design Services Using HOMER. https://www.homerenergy.com/products/pro/index.html. Accessed on 19 January 2024
  36. IEA (2023). Global EV Outlook 2023, IEA, Paris. https://www.iea.org/reports/global-ev-outlook-2023 , Licence: CC BY 4.0
  37. Instituto Para el Desarrollo Sustentable de Rafaela (2018). Plan Local de Acción Climática, Rafaela 2018-2030. https://rafaelasustentable.com.ar/material-util/. Accessed on 15 February 2024
  38. Inter-American Development Bank (IDB). (2019). Electromovilidad: Panorama Actual en América Latina y el Caribe, Inter-American Development Bank (IDB)
  39. Isla, L., Singla, M., Rodríguez Porcel, M., & Granada, I. (2023) Análisis de Tecnología, Industria, y Mercado para Vehículos Eléctricos en América Latina y el Caribe. Banco Interamericano de Desarrollo, Washington DC. http://dx.doi.org/10.18235/0001638
  40. Ji, Z., & Huang, X. (2018). Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges. Renewable and Sustainable Energy Reviews, 90, 710-727
  41. Jiang, Y. (2009). Correlation for diffuse radiation from global solar radiation and sunshine data at Beijing, China. Journal of Energy Engineering, 135(4), 107–111. https://doi.org/10.1061/(asce)0733-9402(2009)135:4(107)
  42. Kapustin, N. O., Grushevenko, D. A. (2020). Long-term electric vehicles outlook and their potential impact on electric grid. Energy Policy, 137, 111103. https://doi.org/10.1016/j.enpol.2019.111103
  43. Karmaker, A. K., Hossain, M. A., Manoj Kumar, N., Jagadeesan, V., Jayakumar, A., & Ray, B. (2020). Analysis of using biogas resources for electric vehicle charging in Bangladesh: A techno-economic-environmental perspective. Sustainability, 12(7), 2579. https://doi.org/10.3390/su12072579
  44. Kasaeian, A., Razmjoo, A., Shirmohammadi, R., Pourfayaz, F., & Sumper, A. (2020). Deployment of a stand‐alone hybrid renewable energy system in coastal areas as a reliable energy source. Environmental Progress & Sustainable Energy, 39(3). https://doi.org/10.1002/ep.13354
  45. Khamharnphol, R., Kamdar, I., Waewsak, J., Chaichan, W., Khunpetch, S., Chiwamongkhonkarn, S., Kongruang, C., & Gagnon, Y. (2023). Microgrid hybrid solar/wind/diesel and battery energy storage power generation system: Application to Koh Samui, southern Thailand. International Journal of Renewable Energy Development, 12(2), 216–226. https://doi.org/10.14710/ijred.2023.47761
  46. Koffi, J. Y., Sako, K. M., Koua, B. K., Koffi, P. M. E., Nguessan, Y., & Diango, A. K. (2022). Study and Optimization of a Hybrid Power Generation System to Power Kalakala, a Remote Locality in Northern Côte d'Ivoire. International Journal of Renewable Energy Development, 11(1), 183-192. https://doi.org/10.14710/ijred.2022.38492
  47. Kumar, A., Gupta, A., Verma, S., Paul, A.R., Jain, A., Haque, N. (2022). Life Cycle Assessment Based Environmental Footprint of a Battery Recycling Process. In: Reddy, A.N.R., Marla, D., Favorskaya, M.N., Satapathy, S.C. (eds) Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies, vol 265. Springer, Singapore. https://doi.org/10.1007/978-981-16-6482-3_12
  48. Lal, S., & Raturi, A. (2012). Techno-economic analysis of a hybrid mini-grid system for Fiji Islands. International Journal of Energy and Environmental Engineering, 3(1), 10. https://doi.org/10.1186/2251-6832-3-10
  49. Lambert, T., Gilman, P. and Lilienthal, P. (2006) Micropower System Modeling with Homer. In: Farret, F.A. and Simões, M.G., Eds., Integration of Alternative Sources of Energy, John Wiley and Sons, Hoboken, 379-418. https://doi.org/10.1002/0471755621.ch15
  50. Lanz, L., Noll, B., Schmidt, T. S., & Steffen, B. (2022). Comparing the levelized cost of electric vehicle charging options in Europe. Nature Communications, 13(1), 5277. https://doi.org/10.1038/s41467-022-32835-7
  51. Li, C., Shan, Y., Zhang, L., Zhang, L., & Fu, R. (2022). Techno-economic evaluation of electric vehicle charging stations based on hybrid renewable energy in China. Energy Strategy Rev., 41, 100850. https://doi,org/10.1016/j.esr.2022.100850
  52. Li, Z. (2024). A review of the current status of global electric vehicle charging infrastructure development. International Journal of Global Economics and Management, 3(3), 123–134. https://doi.org/10.62051/ijgem.v3n3.15
  53. Mardones, C., García, C. (2020). Effectiveness of CO2 taxes on thermoelectric power plants and industrial plants. Energy, 206, 118157. https://doi.org/10.1016/j.energy.2020.118157
  54. Mastoi, M. S., Zhuang, S., Munir, H. M., Haris, M., Hassan, M., Usman, M., Bukhari, S. S. H., & Ro, J.-S. (2022). An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Reports, 8, 11504–11529. https://doi.org/10.1016/j.egyr.2022.09.011
  55. Michel, A. H., Buchecker, M., & Backhaus, N. (2015). Renewable energy, authenticity, and tourism: Social acceptance of photovoltaic installations in a Swiss alpine region. Mountain Research and Development, 35(2), 161. https://doi.org/10.1659/mrd-journal-d-14-00111.1
  56. Ministerio de Ambiente y Desarrollo Sostenible Argentina (2022). Inventario Nacional de Gases de Efecto Invernadero (GEI) de la República Argentina – Año 2022. https://inventariogei.ambiente.gob.ar/
  57. MOVE (2019). Movilidad Eléctrica: Avances en América Latina y el Caribe 2019. United Nations Environment Programme, Office for Latin America and the Caribbean, Panama
  58. Nilsson, M., & Nykvist, B. (2016). Governing the electric vehicle transition-Near term interventions to support a green energy economy. Appl Energy., 179, 1360-1371. https://doi.org/10.1016/j.apenergy.2016.03.056
  59. Nityanshi, Mathur, T., Tikkiwal, V. A., & Nigam, K. (2021). Feasibility analysis of a solar‐assisted electric vehicle charging station model considering differential pricing. Energy Storage, 3(4). doi: 10.1002/est2.237
  60. Oladeji, A. S., Akorede, M. F., Aliyu, S., Mohammed, A. A., & Salami, A. W. (2021). Simulation-Based Optimization of Hybrid Renewable Energy System for Off-grid Rural Electrification. International Journal of Renewable Energy Development, 10(4), 667-686. https://doi.org/10.14710/ijred.2021.31316
  61. Oladigbolu, Jamiu Omotayo, Ramli, M. A. M., & Al-Turki, Y. A. (2020). Optimal design of a hybrid PV solar/micro-hydro/diesel/battery energy system for a remote rural village under tropical climate conditions. Electronics, 9(9), 1491. https://doi.org/10.3390/electronics9091491
  62. Oladigbolu, J. O., Mujeeb, A., Imam, A. A., & Rushdi, A. M. (2022). Design, technical and economic optimization of renewable energy-based electric vehicle charging stations in Africa: The case of Nigeria. Energies, 16(1), 397. https://doi.org/10.3390/en16010397
  63. Oladigbolu, J. O., Mujeeb, A., Al-Turki, Y. A., & Rushdi, A. M. (2023). A novel doubly-green stand-alone electric vehicle charging station in Saudi Arabia: An overview and a comprehensive feasibility study. IEEE Access, 11, 37283-37312. https://doi.org/10.1109/ACCESS.2023.3266436
  64. Oueslati, F. (2023). HOMER optimization of standalone PV/Wind/Battery powered hydrogen refueling stations located at twenty selected French cities. International Journal of Renewable Energy Development, 12(6), 1070–1090. https://doi.org/10.14710/ijred.2023.58218
  65. Ponnapalli, B., Lakshmikhandan, K., Palanisamy, K., & Sithambaram, M. (2023). A hybrid technique for grid-connected solar–wind hybrid system with electric vehicles. Energy & Environment, 0(0). https://doi.org/10.1177/0958305X231153933
  66. Presidencia de la Nación Argentina (2019). Ley 27191. Ministerio de Justicia y Derechos Humanos. https://servicios.infoleg.gob.ar/infolegInternet/anexos/250000-254999/253626/norma.htm
  67. Quirós-Tortós, J., Víctor-Gallardo, L., & Ochoa, L. (2019). Electric vehicles in Latin America: Slowly but surely toward a clean transport. IEEE Electrification Magazine, 7(2), 22–32. https://doi.org/10.1109/mele.2019.2908791
  68. Ritchie, H. (2023). Which countries have ‘enough’ public chargers for electric cars? Sustainability by Numbers. https://www.sustainabilitybynumbers.com/p/public-ev-chargers
  69. Risso, N. (2024). Agustín Salvia: La pobreza aumentará entre uno y tres puntos en 2024. Página 12. https://www.pagina12.com.ar/691925-agustin-salvia-la-pobreza-aumentara-entre-uno-y-tres-puntos-. Accessed on 19 January 2024
  70. Rubio, J., Gutman, M., Almansi, B. P., and Delbuono, V. (2024). Políticas de transición a la electromovilidad en países de ingresos medios. Fundar
  71. Schetinger, A. M., Dias, D. H. N., Borba, B. S. M. C., & Pimentel da Silva, G. D. (2020). Techno‐economic feasibility study on electric vehicle and renewable energy integration: A case study. Energy Storage, 2(6). https://doi.org/10.1002/est2.197
  72. Shaikh, A., Soomro, A. M., Kumar, M. & Shaikh, H. (2022). Assessment of a Stand-alone Hybrid PV-Hydrogen Based Electric Vehicle Charging Station Model Using HOMER. Journal of Applied Engineering & Technology (JAET), 6(1), 11–20. https://doi.org/10.55447/jaet.06.01.59
  73. Shezan, S. K. A. (2019). Optimization and assessment of an off‐grid photovoltaic–diesel–battery hybrid sustainable energy system for remote residential applications. Environmental Progress & Sustainable Energy, 38(6). https://doi.org/10.1002/ep.13340
  74. Singh, R., Gupta, A., Singh, D., & Paul, A. R. (2022). Design and assessment of an electric vehicle charging station using hybrid renewable energy. International Journal of Energy for a Clean Environment, 23(6), 31–47. https://doi.org/10.1615/interjenercleanenv.2022042580
  75. Skjølsvold, T. M., & Ryghaug, M. (2020). Temporal echoes and cross-geography policy effects: Multiple levels of transition governance and the electric vehicle breakthrough. Environmental Innovation and Societal Transitions, 35, 232–240. https://doi.org/10.1016/j.eist.2019.06.004
  76. Slaifstein, D., & Nicchi, F. (2023). Challenges and opportunities when E-mobility is incorporated in Argentinian scenarios. 27th International Conference on Electricity Distribution (CIRED 2023), p. 26-30
  77. Statista (2024). https://www.statista.com/outlook/mmo/electric-vehicles/argentina#unit-sales
  78. Stull, R. B. (2012). An introduction to boundary layer meteorology (1988th ed.). Kluwer Academic
  79. Subsecretaría de Planeamiento Energético de Argentina (2023). Plan Nacional de Transición Energética a 2030. https://www.energiaestrategica.com/wp-content/uploads/2023/07/Plan-Transicion-Energetica-ARG-2030.pdf
  80. Sun, C., Zou, Y., Qin, C., Zhang, B., & Wu, X. (2022). Temperature effect of photovoltaic cells: a review. Advanced Composites and Hybrid Materials, 5(4), 2675–2699. doi: 10.1007/s42114-022-00533-z
  81. Tang, Q., Wu J., Xiao, J., Zhou, F., y Wu, X. (2021). A Case Study of Renewable Energy Resources Assessment Results in Argentina. In 2021 IEEE 4th International Electrical and Energy Conference (CIEEC) (pp. 1-5). IEEE
  82. Tarei, P. K., Chand, P., & Gupta, H. (2021). Barriers to the adoption of electric vehicles: Evidence from India. Journal of Cleaner Production, 291(125847), 125847. https://doi.org/10.1016/j.jclepro.2021.125847
  83. Wainberg, A. (2023). Panorama de las energías renovables en Argentina. Energía & Negocios https://www.energiaynegocios.com.ar/panorama-de-las-energias-renovables-en-argentina/. Accessed on 19 January 2024

Last update:

No citation recorded.

Last update: 2024-12-10 04:56:23

No citation recorded.