1Department of Power Engineering, Satbayev University, 050013, 22A Satpaev Str., Almaty, Kazakhstan
2Department of Automation and Robotics, Almaty Technological University, Kazakhstan
3Department of Electric Power Disciplines, Pavlodar Mechanical Engineering College, Kazakhstan
BibTex Citation Data :
@article{IJRED60369, author = {Rakhimash Abitayeva and Amangeldy Bekbayev and Muratkali Dzhamanbayev and Kairat Bayanbayev and Dina Aikimbayeva}, title = {Equation of motion of split conductor of anchor section at icing in wind flow}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {6}, year = {2024}, keywords = {transmission line; conductor galloping; split phase; linear and torsional motions; galloping frequency; galloping intensity}, abstract = { The relevance of the examined problem is connected with the necessity to develop measures to combat conductor galloping and the design of power transmission lines (ETL). The purpose of the research – to analyse statistical observation data on conductor galloping and apply a mathematical model to determine the parameters of galloping, to develop effective measures to combat conductor galloping and to improve the design of power lines. A sophisticated mathematical model was developed using Mathcad software to analyze conductor galloping in overhead power lines. This model, based on the equations of motion, predicts various galloping parameters under different conditions such as wind speed, span length, and initial mechanical stress. Time diagrams were constructed to represent linear and torsional motions, revealing correlations between amplitudes and frequencies. A comprehensive statistical analysis was performed on wire characteristics and split phase parameters to evaluate their impact on galloping patterns. Numerical methods, including the Runge-Kutta method, were employed to solve the equations and compute time-dependent behaviors. Results were visualized through graphs and diagrams to facilitate interpretation. The results revealed that conductor galloping occurs at wind speeds between 5 to 18 m/s, with significant occurrences at temperatures from 0°C to -10°C. The study identified that conductor galloping occurs within a wind velocity range of 5 to 13 m/s, predominantly with wind orientations between 30˚ and 90˚. The analysis showed that the frequency of galloping closely matches the natural oscillation frequency at low wind speeds but diverges with increasing wind speed and span length. These findings provide insights into the conditions under which conductor galloping is likely to occur and can inform design and operational strategies for overhead power lines. }, pages = {1005--1014} doi = {10.61435/ijred.2024.60369}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60369} }
Refworks Citation Data :
The relevance of the examined problem is connected with the necessity to develop measures to combat conductor galloping and the design of power transmission lines (ETL). The purpose of the research – to analyse statistical observation data on conductor galloping and apply a mathematical model to determine the parameters of galloping, to develop effective measures to combat conductor galloping and to improve the design of power lines. A sophisticated mathematical model was developed using Mathcad software to analyze conductor galloping in overhead power lines. This model, based on the equations of motion, predicts various galloping parameters under different conditions such as wind speed, span length, and initial mechanical stress. Time diagrams were constructed to represent linear and torsional motions, revealing correlations between amplitudes and frequencies. A comprehensive statistical analysis was performed on wire characteristics and split phase parameters to evaluate their impact on galloping patterns. Numerical methods, including the Runge-Kutta method, were employed to solve the equations and compute time-dependent behaviors. Results were visualized through graphs and diagrams to facilitate interpretation. The results revealed that conductor galloping occurs at wind speeds between 5 to 18 m/s, with significant occurrences at temperatures from 0°C to -10°C. The study identified that conductor galloping occurs within a wind velocity range of 5 to 13 m/s, predominantly with wind orientations between 30˚ and 90˚. The analysis showed that the frequency of galloping closely matches the natural oscillation frequency at low wind speeds but diverges with increasing wind speed and span length. These findings provide insights into the conditions under which conductor galloping is likely to occur and can inform design and operational strategies for overhead power lines.
Article Metrics:
Last update:
Last update: 2024-12-10 23:46:33
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.