skip to main content

Renewable energy in sustainable cities: Challenges and opportunities by the case study of Nusantara Capital City (IKN)

Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, B.J. Habibie Science and Technology, South Tangerang, 15314, Indonesia

Received: 6 Jun 2024; Revised: 1 Sep 2024; Accepted: 5 Oct 2024; Available online: 31 Oct 2024; Published: 1 Nov 2024.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study explores strategies for optimizing energy consumption in Indonesia's New Capital City (IKN) to achieve net zero emissions by 2045, focusing on energy efficiency, sustainable mobility, and renewable energy through the Low Emissions Analysis Platform (LEAP) model. Sustainable cars, such as renewable-energy-powered electric and green hydrogen-powered vehicles, can reduce energy consumption by 43% in 2045 and 33% in 2060, respectively, compared to BAU. GHG emissions per capita will drop 70% in 2045 and 63% in 2060. In NZE scenario, IKN can reach 100% green energy by 2045 with a 4.4 GW solar power plant, a 0.92 GWh BESS, and a full load hour capability of 4 hours. By 2045, 1.1 GW of hydropower and 143 MW of wind power are expected to be utilized. In 2060, hydropower will be 2.8 GW, wind power will be 184 MW, and solar power will be 8 GW with 1.6 GWh of BESS. Lack of legislation, technical expertise, high prices, inadequate grid infrastructure, and renewables shortfalls restrict Indonesia's BESS. Solar installation criteria, subsidies, and off-grid project incentives can all help ease BESS use. Forecasts predict 0.53 GW of rooftop solar PV capacity by 2045 and 3.35 GW by 2060. Net metering and solar tariffs boost rooftop solar system profitability. One ton of green hydrogen production requires 55.7 MWh from a solar power plant. Solar power plant capacity will rise to 0.49 GW by 2045, producing 19,359 tons of green hydrogen, and almost quintuple to 89,594 tons by 2060. Hydrogen generation, storage, transit, and distribution require specific infrastructure due to high capital costs and a lack of networks, yet interest in them is growing.

Fulltext View|Download
Keywords: Sustainability; BESS; Rooftop PV; Green Hydrogen
Funding: The National Research and Innovation Agency, Indonesia

Article Metrics:

  1. Adiatma, J. C., & Marciano, I. (2020). The Role of Electric Vehicles in Decarbonizing Indonesia’s Road Transport Sector (F. Tumiwa (ed.)). Institute for Essential Services Reform (IESR)
  2. Akkermans, S., Martín-Ortega, J. L., Sebos, I., & López-Blanco, M. J. (2023). Exploring long-term mitigation pathways for a net zero Tajikistan. In Mitigation and Adaptation Strategies for Global Change (Vol. 28, Issue 3). https://doi.org/10.1007/s11027-023-10053-w
  3. Ashour, A. M., Mohamad, T. I., Azeem, S. M., Thomas, S. P., Aina, Y. A., Sopian, K., & Ibrahim, A. (2021). Deployment of Rooftop Solar Photovoltaic Electrification for Residential Buildings in an Industrial City: A Study on Public Perception and Acceptance. International Journal of Renewable Energy Research, 11(2), 945–951
  4. Badan Pusat Statistik Indonesia. (2023a). Produk Domestik Regional Bruto Per Kapita Atas Dasar Harga Konstan 2010 Untuk 38 Propinsi (2010-2023). https://www.bps.go.id/id/statistics-table/2/Mjg4IzI=/-seri-2010--produk-domestik-regional-bruto-per-kapita--ribu-rupiah-.html
  5. Badan Pusat Statistik Indonesia. (2023b). Statistik Indonesia 2023. https://www.bps.go.id/id/publication/2023/02/28/18018f9896f09f03580a614b/statistik-indonesia-2023.html
  6. Badan Pusat Statistik Kabupaten Kutai Kartanegara. (2023). Kutai Kartanegara dalam Angka 2023. https://kukarkab.bps.go.id/publication/2023/02/28/47869e663017b6324a84752c/kabupaten-kutai-kartanegara-dalam-angka-2023.html
  7. Badan Pusat Statistik Kabupaten Penajam Paser Utara. (2022). Produk Domestik Regional Bruto Kabupaten Penajam Paser Utara Menurut Lapangan Usaha 2018- 2022. https://ppukab.bps.go.id/publication.html?Publikasi%5BtahunJudul%5D=2022&Publikasi%5BkataKunci%5D=PRODUK+DOMESTIK+REGIONAL+BRUTO+KABUPATEN+PENAJAM+PASER+UTARA+MENURUT+LAPANGAN+USAHA&Publikasi%5BcekJudul%5D=0&yt0=Tampilkan
  8. Badan Pusat Statistik Kabupaten Penajam Paser Utara. (2023). Kabupaten Penajam Paser Utara Dalam Angka 2023. https://ppukab.bps.go.id/publication.html?Publikasi%5BtahunJudul%5D=2023&Publikasi%5BkataKunci%5D=Penajam+Paser+Utara+Dalam+Angka&Publikasi%5BcekJudul%5D=0&Publikasi%5BcekJudul%5D=1&yt0=Tampilkan
  9. Bhat, T. H., & Farzaneh, H. (2022). Quantifying the multiple environmental, health, and economic benefits from the electrification of the Delhi public transport bus fleet, estimating a district-wise near roadway avoided PM2.5 exposure. Journal of Environmental Management, 321(February 2022), 116027. https://doi.org/10.1016/j.jenvman.2022.116027
  10. CDP. (2022). The world’s renewable energy cities. https://www.cdp.net/en/cities/world-renewable-energy-cities
  11. Charles Heaps, Eric Kemp-Benedict, J. V. (2021). Next energy modelling system for optimization (NEMO). Stockholm Environment Institute. https://www.sei.org/projects-and-tools/tools/nemo-the-next-energy-modeling-system-for-optimization/
  12. Chen, R., Rao, Z. hua, & Liao, S. ming. (2019). Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data. Journal of Central South University, 26(8), 2136–2148. https://doi.org/10.1007/s11771-019-4161-0
  13. Christidis, P., Ulpiani, G., Stepniak, M., & Vetters, N. (2024). Research and innovation paving the way for climate neutrality in urban transport: Analysis of 362 cities on their journey to zero emissions. Transport Policy, 148(November 2023), 107–123. https://doi.org/10.1016/j.tranpol.2024.01.008
  14. Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, Volume 87(Issue 4), 1059–1082. https://doi.org/https://doi.org/10.1016/j.apenergy.2009.09.026
  15. Dewi, E. L., Aziz, M., Devianto, H., Darmawan, A., Arjasa, O. P., Primeia, S., Kurniawan, & Rahayu, S. (2023). Indonesia Hidrogen Roadmap (O. P. Arjasa & Kurniawan (eds.)). IFHE Press
  16. Edi Hilmawan, Fitriana, I., Sugiyono, A., & Adiarso (Eds.). (2021). Outlook Energi Indonesia 2021. Pusat Pengkajian Industri Proses dan Energi (PPIPE) , BPPT
  17. Emodi, N. V., Emodi, C. C., Murthy, G. P., & Emodi, A. S. A. (2017). Energy policy for low carbon development in Nigeria: A LEAP model application. Renewable and Sustainable Energy Reviews, 68(September 2016), 247–261. https://doi.org/10.1016/j.rser.2016.09.118
  18. GoI. (2019). Presidential Decree No. 55/2019 regarding the Acceleration of the Battery-Based Electric Motor Vehicle (KBLBB) Program for Road Transportation-percepatan program KBLBB untuk transportasi jalan. Government of Indonesia. https://jdih.setneg.go.id/Produk
  19. GoI. (2022a). Annex II to Law of The Republic of Indonesia Number 3 of 2022 on National Capital. 15, 1–24. https://peraturan.go.id/files2/uu-no-3-tahun-2022_terjemah.pdf
  20. GoI. (2022b). Law Number 3 of 2022 on Capital City. https://setkab.go.id/en/ratified-law-on-capital-marks-new-capital-development/
  21. GoI. (2023). Government Regulation No. 33/2023 on Energy Conservation - Konservasi Energi. Government of Indonesia. https://jdih.esdm.go.id/storage/document/Peraturan Pemerintah Nomor 33 Tahun 2023.pdf
  22. GoI. (2024). Gov’t Issues New Rooftop Solar Power Plant Regulation in Indonesia. Cabinet Secretariat of the Republic of Indonesia. https://setkab.go.id/en/govt-issues-new-rooftop-solar-power-plant-regulation/
  23. Han, J., Woo, J., Kim, Y., & Yu, S. (2023). Fuel cell/battery power supply system operational strategy to secure the durability of commercial hydrogen vehicles. Energy Conversion and Management, 288(February), 117163. https://doi.org/10.1016/j.enconman.2023.117163
  24. Handayani, K., Anugrah, P., Goembira, F., Overland, I., Suryadi, B., & Swandaru, A. (2022). Moving beyond the NDCs: ASEAN pathways to a net-zero emissions power sector in 2050. Applied Energy, 311(February). https://doi.org/10.1016/j.apenergy.2022.118580
  25. Handayani, K., Overland, I., Suryadi, B., & Vakulchuk, R. (2023). Integrating 100% renewable energy into electricity systems: A net-zero analysis for Cambodia, Laos, and Myanmar. Energy Reports, 10(October), 4849–4869. https://doi.org/10.1016/j.egyr.2023.11.005
  26. Hassan, Q., Abbas, M. K., Tabar, V. S., Tohidi, S., Jaszczur, M., Abdulrahman, I. S., & Salman, H. M. (2023). Modelling and analysis of green hydrogen production by solar energy. Energy Harvesting and Systems, 10(2), 229–245. https://doi.org/10.1515/ehs-2022-0093
  27. Hassan, Q., Abdulateef, A. M., Hafedh, S. A., Al-samari, A., Abdulateef, J., Sameen, A. Z., Salman, H. M., Al-Jiboory, A. K., Wieteska, S., & Jaszczur, M. (2023). Renewable energy-to-green hydrogen: A review of main resources routes, processes and evaluation. International Journal of Hydrogen Energy, 48(46), 17383–17408. https://doi.org/10.1016/j.ijhydene.2023.01.175
  28. Hassan, Q., Algburi, S., Sameen, A. Z., Salman, H. M., & Jaszczur, M. (2024). Green hydrogen: A pathway to a sustainable energy future. International Journal of Hydrogen Energy, 50, 310–333. https://doi.org/10.1016/j.ijhydene.2023.08.321
  29. Hassan, Q., Sameen, A. Z., Salman, H. M., Jaszczur, M., Al-Hitmi, M., & Alghoul, M. (2023). Energy futures and green hydrogen production: Is Saudi Arabia trend? Results in Engineering, 18(May), 101165. https://doi.org/10.1016/j.rineng.2023.101165
  30. Heaps, C. G. (2021). LEAP: The Low Emissions Analysis Platform. [Software version: 2020.1.47]. Stockholm Environment Institute. Somerville, MA, USA. https://leap.sei.org
  31. Hoang, A. T., Pham, V. V., & Nguyen, X. P. (2021). Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production, 305, 127161. https://doi.org/10.1016/j.jclepro.2021.127161
  32. Hong, J. H., Kim, J., Son, W., Shin, H., Kim, N., Lee, W. K., & Kim, J. (2019). Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system. Energy Policy, 127(January), 425–437. https://doi.org/10.1016/j.enpol.2018.11.055
  33. IEA. (2017). World Energy Outlook 2017. https://www.iea.org/reports/world-energy-outlook-2017
  34. IESR. (2024). MEMR Regulation No. 2/2024 Limits Public Participation to Support Energy Transition through Rooftop Solar PV. https://iesr.or.id/en/tag/minister-of-energy-and-mineral-resources-regulation-number-26-of-2021
  35. IKN Authority. (2023). Nusantara Net Zero Strategy 2045 (Issue December). Deputy for Environment and Natural Resources Nusantara Capital Authority. www.ikn.go.id
  36. Indrawan, N., Thapa, S., Rahman, S. F., Park, J. H., Park, S. H., Wijaya, M. E., Gobikrishnan, S., Purwanto, W. W., & Park, D. H. (2017). Palm biodiesel prospect in the Indonesian power sector. Environmental Technology and Innovation, 7, 110–127. https://doi.org/10.1016/j.eti.2017.01.001
  37. Ioanna, N., Pipina, K., Despina, C., Ioannis, S., & Dionysis, A. (2022). Stakeholder mapping and analysis for climate change adaptation in Greece. Euro-Mediterranean Journal for Environmental Integration, 7(3), 339–346. https://doi.org/10.1007/s41207-022-00317-3
  38. IRENA. (2016). Renewable Energy in Cities. https://www.irena.org/
  39. Kalalinggi, R., Hisdar, M., Sarmiasih, M., & Wijaya, A. K. (2023). Forecasting The Development of IKN (New National Capital) in Sustainable Development, Indonesia. Journal of Governance and Public Policy, 10(1), PRESS. https://doi.org/10.18196/jgpp.v10i1.16786
  40. Kale, R. V., & Pohekar, S. D. (2014). Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning. Energy Policy, 72, 1–13. https://doi.org/10.1016/j.enpol.2014.05.007
  41. Krstić – Furundžić, A., Scognamiglio, A., Devetakovic, M., Frontini, F., & Sudimac, B. (2020). Trends in the integration of photovoltaic facilities into the built environment. Open House International, 45(1–2), 195–207. https://doi.org/10.1108/OHI-04-2020-0015
  42. Kunkel, L. C., Breetz, H. L., & Abbott, J. K. (2022). 100% renewable electricity policies in U.S. cities: A mixed methods analysis of adoption and implementation. Energy Policy, 167(May), 113053. https://doi.org/10.1016/j.enpol.2022.113053
  43. Kurrer, C. (2020). The potential of hydrogen for decarbonising steel production. EPRS | European Parliamentary Research Service, December, 1–8
  44. Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Abernethy, S., Andrew, R. M., De-Gol, A. J., Willis, D. R., Shan, Y., Canadell, J. G., Friedlingstein, P., Creutzig, F., & Peters, G. P. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 10(7), 647–653. https://doi.org/10.1038/s41558-020-0797-x
  45. Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., … Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-18922-7
  46. Losada-Puente, L., Blanco, J. A., Dumitru, A., Sebos, I., Tsakanikas, A., Liosi, I., Psomas, S., Merrone, M., Quiñoy, D., & Rodríguez, E. (2023). Cross-Case Analysis of the Energy Communities in Spain, Italy, and Greece: Progress, Barriers, and the Road Ahead. Sustainability (Switzerland), 15(18), 1–20. https://doi.org/10.3390/su151814016
  47. Malka, L., Bidaj, F., Kuriqi, A., Jaku, A., Roçi, R., & Gebremedhin, A. (2023). Energy system analysis with a focus on future energy demand projections: The case of Norway. Energy, 272(October 2022), 127107. https://doi.org/10.1016/j.energy.2023.127107
  48. Martín-Ortega, J. L., Chornet, J., Sebos, I., Akkermans, S., & López Blanco, M. J. (2024). Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation. Sustainability (Switzerland) , 16(10), 1–35. https://doi.org/10.3390/su16104219
  49. Martinez-Bolanos, J. R., Udaeta, M. E. M., Gimenes, A. L. V., & Silva, V. O. da. (2020). Economic feasibility of battery energy storage systems for replacing peak power plants for commercial consumers under energy time of use tariffs. Journal of Energy Storage, 29(November 2019), 101373. https://doi.org/10.1016/j.est.2020.101373
  50. Ministry of Energy and Mineral Resources. (2023). Draft Rencana Umum Ketenagalistrikan Nasional (RUKN)- Draft National Electricity Master Plan 2023-2060. https://gatrik.esdm.go.id/assets/uploads/download_index/files/eed9c-draft-rukn-cover.pdf
  51. Mirjat, N. H., Uqaili, M. A., Harijan, K., Walasai, G. Das, Mondal, M. A. H., & Sahin, H. (2018). Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis. Energy, 165, 512–526. https://doi.org/10.1016/j.energy.2018.10.012
  52. Mirzaei Omrani, M., & Jannesari, H. (2019). Economic and environmental assessment of reusing electric vehicle lithium-ion batteries for load leveling in the residential, industrial and photovoltaic power plants sectors. Renewable and Sustainable Energy Reviews, 116(January), 109413. https://doi.org/10.1016/j.rser.2019.109413
  53. Montoya-Torres, J., Akizu-Gardoki, O., Alejandre, C., & Iturrondobeitia, M. (2023). Towards sustainable passenger transport: Carbon emission reduction scenarios for a medium-sized city. Journal of Cleaner Production, 418(July), 138149. https://doi.org/10.1016/j.jclepro.2023.138149
  54. Namin, A. T., Eckelman, M. J., & Isaacs, J. A. (2023). Technical feasibility of powering U.S. manufacturing with rooftop solar PV. Environmental Research: Infrastructure and Sustainability, 3(1). https://doi.org/10.1088/2634-4505/acb5bf
  55. Nkounga, W. M., Ndiaye, M. F., & Ndiaye, M. L. (2022). Sustainable Energy Access for Communities: Rethinking the Energy Agenda for Cities (A. Fall & R. Haas (Eds.)). Springer. https://doi.org/https://doi.org/10.1007/978-3-030-68410-5
  56. Ordonez, J. A., Fritz, M., & Eckstein, J. (2022). Coal vs. renewables: Least-cost optimization of the Indonesian power sector. Energy for Sustainable Development, 68, 350–363. https://doi.org/10.1016/j.esd.2022.04.017
  57. Papadogiannaki, S., Liora, N., Parliari, D., Cheristanidis, S., Poupkou, A., Sebos, I., Progiou, A., & Melas, D. (2023). Evaluating the Impact of COVID-19 on the Carbon Footprint of Two Research Projects: A Comparative Analysis. Atmosphere, 14(9). https://doi.org/10.3390/atmos14091365
  58. Pinho-Gomes, A. C., Roaf, E., Fuller, G., Fowler, D., Lewis, A., ApSimon, H., Noakes, C., Johnstone, P., & Holgate, S. (2023). Air pollution and climate change. In The Lancet Planetary Health (Vol. 7, Issue 9). https://doi.org/10.1016/S2542-5196(23)00189-4
  59. Progiou, A. G., Sebos, I., Zarogianni, A.-M., Tsilibari, E. M., Adamopoulos, A. D., & Varelidis, P. (2022). Impact of covid-19 pandemic on air pollution: the case of athens, greece. Environmental Engineering and Management Journal, 21(5), 879–889. https://doi.org/10.30638/eemj.2022.080
  60. Progiou, A., Liora, N., Sebos, I., Chatzimichail, C., & Melas, D. (2023). Measures and Policies for Reducing PM Exceedances through the Use of Air Quality Modeling: The Case of Thessaloniki, Greece. Sustainability (Switzerland), 15(2). https://doi.org/10.3390/su15020930
  61. PT.PLN (Persero). (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) - Business Plan for Electricity Provision 2021-2030
  62. Raharjo, J., Saputra, E., Kumalawati, R., Pratomo, R., Budiman, P., Reinhart, H., Musthofa, A., Barrorotul, I., Susan, A., Rijanta, & Bekti, L. (2022). Sustainability Challenges in the Development of Nusantara: the New Capital of Indonesia (Issue June). PT. Pustaka Pelajar
  63. Sadri, A., Ardehali, M. M., & Amirnekooei, K. (2014). General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN. Energy, 77, 831–843. https://doi.org/10.1016/j.energy.2014.09.067
  64. Santosa, J., Kuncoro, A. H., Dwijatmiko, A., Hesty, N. W., & Darmawan, A. (2023). The Role of Nuclear Power Plants in Indonesia towards Net Zero Emissions (NZE) in 2060 with a Multi Regions Approach. Evergreen, 10(3), 1660–1673. https://doi.org/10.5109/7151715
  65. Sebos, I., Progiou, A., Kallinikos, L., Eleni, P., Katsavou, I., Mangouta, K., & Ziomas, I. (2016). Mitigation and adaptation policies related to climate change in Greece. Green Energy and Technology, PartF2, 35–49. https://doi.org/10.1007/978-3-319-30127-3_4
  66. Sebos, Ioannis, Nydrioti, I., Katsiardi, P., & Assimacopoulos, D. (2023). Stakeholder perceptions on climate change impacts and adaptation actions in Greece. Euro-Mediterranean Journal for Environmental Integration, 8(4), 777–793. https://doi.org/10.1007/s41207-023-00396-w
  67. Suparman, S. (2023, December 23). Nusantara development progress: Coordinating Ministry analyzes Smart City concept. The Jakarta Post. https://www.thejakartapost.com/business/2023/12/23/nusantara-development-progress-coordinating-ministry-analyzes-smart-city-concept.html
  68. Suri, A., Wardhana, A., Rashidi, R. A., & Kaswiyanto, R. (2023). Powering Nusantara : Modeling the Electricity Future of Indonesia’s New Capital City. Energy and Environment Practicum, Columbia SIPA
  69. te Heesen, H., Herbort, V., & Rumpler, M. (2019). Performance of roof-top PV systems in Germany from 2012 to 2018. Solar Energy, 194(June), 128–135. https://doi.org/10.1016/j.solener.2019.10.019
  70. Toh, C. K. (2022). Tokyo’s city sustainability: Strategy and plans for net zero emissions by 2050. IET Smart Cities, 4(2), 81–91. https://doi.org/10.1049/smc2.12033
  71. Tsepi, E., Sebos, I., & Kyriakopoulos, G. L. (2024). Decomposition Analysis of CO2 Emissions in Greece from 1996 to 2020. Strategic Planning for Energy and the Environment, 43(03), 517–544. https://doi.org/https://doi.org/10.13052/spee1048-5236.4332
  72. United Nations. (2023). Global Sustainable Development Report 2023: Times of crisis, times of change: Science for accelerating transformations to sustainable development. https://desapublications.un.org/publications/global-sustainable-development-report-2023
  73. USAID. (2017). Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation. Doe Osti.Gov, November, 1–30. http://www.osti.gov/servlets/purl/1411521/%0Ahttps://www.nrel.gov/docs/fy18osti/67040.pdf%0Ahttps://doi.org/10.2172/1411521
  74. Willmer, G. (2022). Heavy-duty trucks drive clean hydrogen to the next level. The EU Research & Innovation Magazine. https://projects.research-and-innovation.ec.europa.eu/en/horizon-magazine/heavy-duty-trucks-drive-clean-hydrogen-next-level
  75. Yao, X., Ma, S. C., Fan, Y., Zhu, L., & Su, B. (2022). An investigation of battery storage operating strategies in the context of smart cities. Industrial Management and Data Systems, 122(10), 2393–2415. https://doi.org/10.1108/IMDS-01-2022-0011
  76. Yassine, C., Ioannis, S., & Salah, J. (2024). Unveiling Oman’s fisheries sector’s carbon emissions and charting reduction pathways. Journal of Environmental Studies and Sciences, 0123456789. https://doi.org/10.1007/s13412-024-00920-6
  77. Yassine, C., & Sebos, I. (2024). Quantifying COVID-19′s impact on GHG emission reduction in Oman’s transportation sector: A bottom-up analysis of pre-pandemic years (2015–2019) and the pandemic year (2020). Case Studies on Transport Policy, 16(April), 101204. https://doi.org/10.1016/j.cstp.2024.101204
  78. Yoo, Y., & Ha, Y. (2024). Market attractiveness analysis of battery energy storage systems in Indonesia, Malaysia, the Philippines, Thailand, and Vietnam. Renewable and Sustainable Energy Reviews, 191(November 2023), 114095. https://doi.org/10.1016/j.rser.2023.114095
  79. Yuan, X. C., Lyu, Y. J., Wang, B., Liu, Q. H., & Wu, Q. (2018). China’s energy transition strategy at the city level: The role of renewable energy. Journal of Cleaner Production, 205, 980–986. https://doi.org/10.1016/j.jclepro.2018.09.162
  80. Yudiartono, Y., Windarta, J., & Adiarso, A. (2023). Sustainable Long-Term Energy Supply and Demand: The Gradual Transition to a New and Renewable Energy System in Indonesia by 2050. International Journal of Renewable Energy Development, 12(2), 419–429. https://doi.org/10.14710/ijred.2023.50361
  81. Zheng, Y., Hou, D., Liu, Y., Zhou, Y., & Xiao, J. (2024). Complex system analysis of the implications of hydrogen fuel cell trucks in China’s road freight transportation. International Journal of Hydrogen Energy, 60(November 2023), 1449–1461. https://doi.org/10.1016/j.ijhydene.2024.02.231

Last update:

No citation recorded.

Last update: 2024-12-10 11:27:49

No citation recorded.