skip to main content

Performance analysis of a photovoltaic component integrated into a hybrid power plant in Southeast Mauritania

1Department of Physics, University of Nouakchott(UN), Nouakchott, Mauritania

2Department of Second Cycle, Higher School in Applied Sciences (ESSAT), Tlemcen, Algeria

3SMARTiLab, Moroccan School of Engineering Sciences (EMSI), Rabat, Morocco

4 Research Unit in Electromechanics (UREM), Institut Supérieur d’Enseignement Technologique (ISET), Rosso, Mauritania

View all affiliations
Received: 15 Jul 2024; Revised: 17 Sep 2024; Accepted: 10 Oct 2024; Available online: 15 Oct 2024; Published: 1 Nov 2024.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study investigated the performance of photovoltaic components of the 1.3MW KIFFA hybrid power plant in Mauritania. Data from the plant's monitoring system (January-December 2021) was used to assess various performance metrics. The analysis revealed a high daily reference yield (5.60 h/d), indicating good solar resource availability. However, final and array yields (4.78 h/d and 4.86 h/d, respectively) suggested potential for improvement. System component efficiencies were within acceptable ranges, with particularly high inverter efficiency (98.31%). Array capture losses were moderate (0.74 h/d), and system losses were minimal (0.08 h/d). The annual performance ratio (86.33%) and capacity factor (19.91%) indicated good overall plant performance. These findings were then compared with data from similar installations in various climate zones to understand the impact of climatic variations on photovoltaic performance. Compared to installations in temperate zones with lower irradiation levels, the KIFFA plant's reference yield was significantly higher. However, the final and array yields were closer due to potentially higher operating temperatures in Mauritania affecting module efficiency. Interestingly, comparisons with installations in other desert regions with similarly high irradiation levels revealed lower performance, particularly in terms of final yield, (4.71 h/d) in Algéria (Adrar) and (4.10 h/d) in Oman (Muscat). This suggests that climatic factors beyond just sunlight availability, such as dust accumulation, may have played a significant role in their performance compared to the KIFFA plant.
Fulltext View|Download
Keywords: Climate impacts; KIFFA hybrid power plant; Module yields; Performances factors; PV plant performances; PV system losses

Article Metrics:

  1. Abdi, E., Bilal, B., Nourou, D., Ndongoa, M., Kebe, C., Ndiaye, A., & Ndiaye, P. A. (2018). Wind parameters measurement to analysis the sectoral variation influence on the diurnal behavior of wind potential for a site: Application on the site of Nouakchott, Mauritania. In CAFMET (Ed.), 7th International Metrology Conference – CAFMET,
  2. AFD, Agence Française de Développement, (2023) Retrieved from https://afd.fr/fr/ressources/evaluation-du-projet-de-construction-dune-centrale-hybride-thermo-photovoltaique-kiffa-republique-islamique-de-mauritanie
  3. ABC, ABC CONTRACTING (2023) Retrieved from https://abccontracting.be/projets/centrale-thermique-et-hybride-de-kiffa-2/
  4. SOMELEC. (2021)., Société Mauritanienne d'Électricité. Retrieved from . https://somelec.mr/?q=node
  5. Al-Badi, A. H. (2018). Measured performance evaluation of a 1.4 kW grid connected desert type PV in Oman. Energy for Sustainable Development, 47, 107-113. https://doi.org/10.1016/j.esd.2018.09.007
  6. Aoun, N. (2020). Performance analysis of a 20 MW grid-connected photovoltaic installation in Adrar, South of Algeria. Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems, 85. http://dx.doi.org/10.5772/intechopen.85999
  7. Aoun, N; Bouchouicha, K; Chenni, R. (2017). Performance evaluation of a mono-crystalline photovoltaic module under different weather and sky conditions. International Journal of Renewable Energy Research, 7(1), 292-297. https://doi.org/10.20508/ijrer.v7i1.5472.g6988
  8. Attari, K., Elyaakoubi, A., & Asselman, A. (2016). Performance analysis and investigation of a grid-connected photovoltaic installation in Morocco. Energy Reports, 2, 261-266. http://dx.doi.org/10.1016/j.egyr.2016.10.004
  9. Ayompe, L. M., Duffy, A., McCormack, S. J., & Conlon, M. (2011). Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy conversion and management, 52(2), 816-825. https://doi.org/10.1016/j.enconman.2010.08.007
  10. Ba, A., Mahmoud, M. M., Dah, N. O., Amadou, D., El Hassen, A., & Ehssein, C. (2019). Monitoring the Performances of a Maximum Power Point Tracking Photovoltaic (MPPT PV) Pumping System Driven by A Brushless Direct Current (BLDC) Motor. International Journal of Renewable Energy Development, 8(2), 193-201. https://doi.org/ijrd.8.2.193-201
  11. Biyik, E., Araz, M., Hepbasli, A., Shahrestani, M., Yao, R., Shao, L., & Atlı, Y. B. (2017). A key review of building integrated photovoltaic (BIPV) systems. Engineering science and technology, 20(3), 833-858. http://dx.doi.org/10.1016/j.jestch.2017.01.009
  12. Bouaichi, A., El Amrani, A., Ouhadou, M., Lfakir, A., & Messaoudi, C. (2020). In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco. Energy, 190, 116368. https://doi.org/10.1016/j.energy.2019.116368
  13. BP, B. P. (2023, Mars). BP et la Mauritanie vont explorer le potentiel de l’hydrogène vert à grande échelle. Retrieved from BP site: https://www.bp.com/fr_mr/mauritania/home/news/press-releases/bp-et-la-mauritanie-vont-explorer-le-potentiel-de-lhydrogene-vert-a-grande-echelle.html
  14. Chimtavee, A., & Ketjoy, N. (2012). PV generator performance evaluation and load analysis of the PV microgrid system in Thailand. Procedia Engineering, 32, 384-391. https://doi.org/10.1016/j.proeng.2012.01.1283
  15. Chioncel, C. P., Kohake, D., Augustinov, L., Chioncel, P., & Tirian, G. O. (2010). Yield factors of a photovoltaic plant. Acta Tech Corvin Bull Eng (Fascicule). Retrieved from https://www.researchgate.net/publication/259865972
  16. Dabou, R., Bouchafaa, F., Arab, A. H., Bouraiou, A., Draou, M. D., Neçaibia, A., & Mostefaoui, M. (2016). Monitoring and performance analysis of grid connected photovoltaic under different climatic conditions in south Algeria. Energy Conversion and Management, 130, 200-206. http://dx.doi.org/10.1016/j.enconman.2016.10.058
  17. Dahbi, H., Aoun, N., & Sellam, M. (2021). Performance analysis and investigation of a 6 MW grid-connected ground-based PV plant installed in hot desert climate conditions. International Journal of Energy and Environmental Engineering, 12, 577-587. https://doi.org/10.1007/s40095-021-00389-x
  18. de Lima, L. C., de Araújo Ferreira, L., & de Lima Morais, F. B. (2017). Performance analysis of a grid connected photovoltaic system in northeastern Brazil. Energy for Sustainable Development, 37, 79-85. https://doi.org/10.1016/j.esd.2017.01.004
  19. Fuster-Palop, E., Vargas-Salgado, C., Ferri-Revert, J. C., & Payá, J. (2022). Performance analysis and modelling of a 50 MW grid-connected photovoltaic plant in Spain after 12 years of operation. Renewable and Sustainable Energy Reviews, 170, 112968. https://doi.org/10.1016/j.rser.2022.112968
  20. Goss, B., Cole, I. R., Koubli, E., Palmer, D., Betts, T. R., & Gottschalg, R. (2017). Modelling and prediction of PV module energy yield. In The Performance of Photovoltaic (PV) Systems. Woodhead Publishing. http://dx.doi.org/10.1016/B978-1-78242-336-2.00004-5
  21. Heyine, M. S., Yahya, A. M., Daher, D. H., Gaillard, L., Menezo, C., & Mahmoud, A. K. (2022). Performance evaluation of 50MWp solar plant under different climatic conditions. International Journal of Power Electronics and Drive Systems, 13(1), 561. https://doi.org/10.11591/ijpeds.v13.i1.pp561-575
  22. Huld, T; Gottschalg, R; Beyer, H G; Topič, M. (2010). Mapping the performance of PV modules, effects of module type and data averaging. Solar Energy, 84(2), 324-338. https://doi.org/10.1016/j.solener.2009.12.002
  23. IRENA. (2015). Renewables Readiness Assessment: Mauritania. (International Renewable Energy Agency) Retrieved from https://www.irena.org/-/media/Files/IRENA/RRA/Country-Report/IRENA_RRA_Mauritania_EN_2015.pdf
  24. Kazem, H. A., Khatib, T., Sopian, K., & Elmenreich, W. (2014). Performance and feasibility assessment of a 1.4 kW roof top grid-connected photovoltaic power system under desertic weather conditions. Energy and Buildings, 82, 123-129. http://dx.doi.org/10.1016/j.enbuild.2014.06.048
  25. Kerboua, A., Boukli-Hacene, F., & Mourad, K. A. (2020). Particle swarm optimization for micro-grid power management and load scheduling. International Journal of Energy Economics and Policy, 10(2), 71-80. https://doi.org/10.32479/ijeep.8568
  26. Kumar, B. S., & Sudhakar, K. (2015). Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy reports, 1, 184-192. http://dx.doi.org/10.1016/j.egyr.2015.10.001
  27. Kumar, N. M., Gupta, R. P., Mathew, M., Jayakumar, A., & Singh, N. K. (2019). Performance, energy loss, and degradation prediction of roof-integrated crystalline solar PV system installed in Northern India. Case Studies in Thermal Engineering, 13, 100-409. https://doi.org/10.1016/j.csite.2019.100409
  28. Kymakis, E; Kalykakis, S; Papazoglou, T M. (2009). Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy conversion and management, 50(3), 433-438. https://doi.org/10.1016/j.enconman.2008.12.009
  29. Maouedj, R., Mammeri, A., Draou, M. D., & Benyoucef, B. (2015). Techno-economic analysis of a standalone hybrid photovoltaic-wind system. Application in electrification of a house in Adrar region. Energy Procedia, 74, 1192-1204. https://doi.org/10.1016/j.egypro.2015.07.762
  30. Mpholo, M., Nchaba, T., & Monese, M. (2015). Yield and performance analysis of the first grid-connected solar farm at Moshoeshoe I International Airport, Lesotho. Renewable energy, 81, 845-852. http://dx.doi.org/10.1016/j.renene.2015.04.001
  31. Naia, M., & Brito, C. (2021). Atlas Géographique de la Mauritanie. CIBIO/InBIO. https://doi.org/10.13140/RG.2.2.16997.42729/1
  32. Olarewaju, R. O., Ogunjuyigbe, A. S., Ayodele, T. R., & Yusuff, A. A. (August 2020). Performance Investigation of a Proposed 75MW Grid Connected Solar PV in Kankia, Nigeria. In IEEE (Ed.), 2020 IEEE PES/IAS PowerAfrica, (pp. 1-5). Nairobi, Kenya. https://doi.org/10.1109/PowerAfrica49420.2020.9219975
  33. ONS, O. N. (2017). Monographie de la ville de kiffa. Bureau Central du Recensement (BCR). Retrieved from https://ons.mr/images/RGPH2013/Monograhie%20de%20la%20Ville%20de%20Kiffa_Fr.pdf
  34. PNIDDLE, M. d. (2020). Plan de développement de la commune de kiffa. Programme national intègre d’appui à la décentralisation et au développement local et à l’emploi des jeunes (PNIDDLE). Retrieved from https://moudoun.mr/wp-content/uploads/2021/01/PDC-Kiffa-Rapport-Final-F.pdf
  35. Quansah, D. A., Adaramola, M. S., Appiah, G. V., & Edwin, I. A. (2017). Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate. International Journal of hydrogen energy, 42(7), 4626-4635. http://dx.doi.org/10.1016/j.ijhydene.2016.10.119
  36. Ramdhane, I. B., Ndiaye, D., Menou, M. M., Mahmoud, A. K., Yahya, A. M., & Yahfdhou, A. (2017). Optimization of electrical production of a hybrid system (solar, diesel and storage) pilot using HOMER in Biret, Southern Coast of Mauritania. International Journal of Physical Sciences, 12(18), 211-223. https://doi.org/10.5897/IJPS2017.4632
  37. Sharma, R., & Goel, S. ((2017)). Performance analysis of a 11.2 kWp roof top grid-connected PV system in Eastern India. Energy Reports, 3, 76-84. http://dx.doi.org/10.1016/j.egyr.2017.05.001
  38. Sharma, V., & Chandel, S. S. (2013). Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India. Energy, 55, 476-485. http://dx.doi.org/10.1016/j.energy.2013.03.075
  39. Sidi, C., Ndiaye, M. L., El Bah, M., Mbodji, A., Ndiaye, A., & Ndiaye, P. A. (2016). Performance analysis of the first large-scale (15 MWp) grid-connected photovoltaic plant in Mauritania. Energy conversion and management, 119, 411-421. http://dx.doi.org/10.1016/j.enconman.2016.04.070
  40. Soukeyna, M., Ramdhane, I. B., Ndiaye, D., Elmamy, M., Menou, M. M., Yahya, M. A., . . . Youm, I. (2018). Feasibility analysis of hybrid electricity generation system by HOMER for Mauritanian northern coast. International Journal of Physical Sciences, 13(8), 120-131. https://doi.org/10.5897/IJPS2018.4726
  41. Stoyanov, L; Notton, G; Lazarov, V D. (2007). Optimisation des systèmes multi-sources de production d’électricité à énergies renouvelables. Journal of Renewable Energies, 10(1), 1-18. https://doi.org/10.54966/jreen.v10i1.794
  42. Sundaram, S., & Babu, J. C. (2015). Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India. Energy conversion and management, 100, 429-439. http://dx.doi.org/10.1016/j.enconman.2015.04.069
  43. Veerendra Kumar, D. J., Deville, L., Ritter III, K. A., Raush, J. R., Ferdowsi, F., Gottumukkala, R., & Chambers, T. L. (2022). Performance evaluation of 1.1 mw grid-connected solar photovoltaic power plant in louisiana. Energies, 15(9), 3420. https://doi.org/10.3390/en15093420
  44. Wittkopf, S., Valliappan, S., Liu, L., Ang, K. S., & Cheng, S. C. (2012). Analytical performance monitoring of a 142.5 ákWp grid-connected rooftop BIPV system in Singapore. Renewable Energy, 47, 9-20. https://doi.org/10.1016/j.renene.2012.03.034
  45. Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied energy, 87(2), 380-389. https://doi.org/10.1016/j.apenergy.2009.08.012

Last update:

No citation recorded.

Last update: 2024-12-11 04:02:56

No citation recorded.