skip to main content

A numerical H Darrieus hydrokinetic turbine performance assessment with the application of openings in blade geometry

Department of Engineering, Instituto Tecnológico Metropolitano, Medellín, Colombia

Received: 20 Jul 2024; Revised: 18 Oct 2024; Accepted: 7 Nov 2024; Available online: 25 Nov 2024; Published: 1 Jan 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study explores the impact of various geometric modifications, including leading-edge openings, trailing- edge openings, and circular openings, on the performance of the H Darrieus hydrokinetic turbine. These modifications involved the removal of material from a symmetrical NACA0018 airfoil along its surface. The leading edge and trailing edge openings extended from the lower to the upper surface of the blade, while the circular opening was applied exclusively to the upper surface. Using the commercial software ANSYS® V22.2, the turbine was designed, discretized, and analyzed through computational fluid dynamics employing the Realizable K-e turbulence model. The primary output variable measured was torque, from which the power coefficient for each design modification was derived, allowing for the calculation of efficiency in each scenario. Notably, the configuration featuring the upper circular opening achieved the highest efficiency at 51.88% at a Tip Speed Ratio (TSR) of 2.0, a significant improvement over the standard case which had an efficiency of 45.16%. In contrast, the leading-edge and trailing-edge openings resulted in reduced efficiencies of 44.54% and 31.19%, respectively. The enhanced power coefficient of the H Darrieus hydrokinetic turbine with circular openings is attributed to the increased pressure difference generated between the upper and lower surfaces of the blade, surpassing the performance of the standard design.
Fulltext View|Download
Keywords: CFD; H Darrieus; Geometrical modifications; Efficiency.

Article Metrics:

  1. Alqurashi, F., & Mohamed, M. H. (2020). Aerodynamic Forces Affecting the H-Rotor Darrieus Wind Turbine. Modelling and Simulation in Engineering, 2020, 1–15. https://doi.org/10.1155/2020/1368369
  2. Ansys Inc. (2013). ANSYS ICEM CFD User ’ s Manual. 15317(November), 724–746
  3. Bilgili, M., Bilirgen, H., Ozbek, A., Ekinci, F., & Demirdelen, T. (2018). The role of hydropower installations for sustainable energy development in Turkey and the world. Renewable Energy, 126, 755–764. https://doi.org/10.1016/J.RENENE.2018.03.089
  4. Briones Hidrovo, A., Uche, J., & Martínez-Gracia, A. (2017). Accounting for GHG net reservoir emissions of hydropower in Ecuador. Renewable Energy, 112, 209–221. https://doi.org/10.1016/J.RENENE.2017.05.047
  5. Shashikkumar, C M., & Madav, V. (2021). Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation. Renewable Energy, 177, 1170–1197. https://doi.org/10.1016/J.RENENE.2021.05.086
  6. Chaulagain, R. K., Poudel, L., & Maharjan, S. (2023). A review on non-conventional hydropower turbines and their selection for ultra-low-head applications. Heliyon, 9(7). https://doi.org/10.1016/J.HELIYON.2023.E17753
  7. Douak, M., & Aouachria, Z. (2015). Starting Torque Study of Darrieus Wind Turbine. International Journal of Mathematical, Computational, Physical, Electrical, and Computer Engineering, 9(8), 472–477. https://doi.org/10.5281/zenodo.1108332
  8. Dyner, I., Alvarez, C., & Cherni, J. (2005). Energy Contribution to Sustainable Rural Livelihoods in Developing Countries: A System Dynamics Approach. https://proceedings.systemdynamics.org/2005/proceed/papers/DYNER155.pdf
  9. El-Askary, W. A., Saad, A. S., AbdelSalam, A. M., & Sakr, I. M. (2018). Investigating the performance of a twisted modified Savonius rotor. Journal of Wind Engineering and Industrial Aerodynamics, 182, 344–355. https://doi.org/10.1016/J.JWEIA.2018.10.009
  10. Gonçalves, A. N. C., Pereira, J. M. C., & Sousa, J. M. M. (2022). Passive control of dynamic stall in a H-Darrieus Vertical Axis Wind Turbine using blade leading-edge protuberances. Applied Energy, 324, 119700. https://doi.org/10.1016/J.APENERGY.2022.119700
  11. Halder, P., Doppalapudi, A. T., Azad, A. K., & Khan, M. M. K. (2021). Efficient hydroenergy conversion technologies, challenges, and policy implication. Advances in Clean Energy Technologies, 295–318. https://doi.org/10.1016/B978-0-12-821221-9.00007-4
  12. He, J. H., Li, M. G., & Chen, J. J. (2024). A novel unresolved/semi-resolved CFD-DEM coupling method with dynamic unstructured mesh. International Journal for Numerical and Analytical Methods in Geomechanics, 48(7), 1774–1796. https://doi.org/10.1002/NAG.3701
  13. Hussain, A., Sarangi, G. K., Pandit, A., Ishaq, S., Mamnun, N., Ahmad, B., & Jamil, M. K. (2019). Hydropower development in the Hindu Kush Himalayan region: Issues, policies and opportunities. Renewable and Sustainable Energy Reviews, 107, 446–461. https://doi.org/10.1016/J.RSER.2019.03.010
  14. Ibrahim, A. A., Elbaz, A. M. R., Melani, P. F., Mohamed, O. S., & Bianchini, A. (2022). Power augmentation of Darrieus wind turbine blades using trapped vortex cavity. Journal of Wind Engineering and Industrial Aerodynamics, 223, 104949. https://doi.org/10.1016/J.JWEIA.2022.104949
  15. IPSE. (2022). Caracterizaciòn ZNI. https://ipse.gov.co/cnm/caracterizacion-energetica-de-las-zni-ipse/
  16. Judith Guevara-Muñoz, A., Hincapie-Zuluaga, D. A., Rodríguez-Cabal, M. Á., Sierra-Del-rio, J. A., Colmenares-Quintero, R. F., & Torres-Lopez, E. (2023). 2D Numerical Analysis of an H-Darrieus Hydrokinetic Turbine with Passive Improvement Mechanisms. Engineering Transactions, 71(4), 553–569. https://doi.org/10.24423/ENGTRANS.3111.20231107
  17. Julian, C., Acevedo, M., David, F., & Martinez, S. (2017). Diseno de una pequena central hidroelectrica para el municipo de pisba, boyaca universidad pedagogica Y tecnologica de Colombia facultad seccional duitama ingenieria electromecanica duitama, 2017. http://repositorio.uptc.edu.co/handle/001/2632
  18. Kamal, M. M., & Saini, R. P. (2023). Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters. Energy, 267, 126541. https://doi.org/10.1016/J.ENERGY.2022.126541
  19. Khan, I., Hou, F., Irfan, M., Zakari, A., & Le, H. P. (2021). Does energy trilemma a driver of economic growth? The roles of energy use, population growth, and financial development. Renewable and Sustainable Energy Reviews, 146, 111157. https://doi.org/10.1016/J.RSER.2021.111157
  20. Kirke, B. (2020). Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development, 58, 182–195. https://doi.org/10.1016/J.ESD.2020.08.003
  21. La Camera, F. (n.d.). Raising climate ambitions through renewables People, Planet and Prosperity. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jul/IRENA_People-Planet-and-Prosperity_2019.pdf
  22. Lee, J. H., Lee, Y. T., & Lim, H. C. (2016). Effect of twist angle on the performance of Savonius wind turbine. Renewable Energy, 89, 231–244. https://doi.org/10.1016/J.RENENE.2015.12.012
  23. Liang, X., Fu, S., Ou, B., Wu, C., Chao, C. Y. H., & Pi, K. (2017a). A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renewable Energy, 113, 329–334. https://doi.org/10.1016/J.RENENE.2017.04.071
  24. Liang, X., Fu, S., Ou, B., Wu, C., Chao, C. Y. H., & Pi, K. (2017b). A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renewable Energy, 113, 329–334. https://doi.org/10.1016/j.renene.2017.04.071
  25. Liu, X., Luo, Y., Karney, B. W., & Wang, W. (2015). A selected literature review of efficiency improvements in hydraulic turbines. Renewable and Sustainable Energy Reviews, 51, 18–28. https://doi.org/10.1016/J.RSER.2015.06.023
  26. López, O. D., Botero, N., Nunez, E. E., & Laín, S. (2024). Performance Improvement of a Straight-Bladed Darrieus Hydrokinetic Turbine through Enhanced Winglet Designs. Journal of Marine Science and Engineering 2024, Vol. 12, Page 977, 12(6), 977. https://doi.org/10.3390/JMSE12060977
  27. Mohamed, M. H. (2012). Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy, 47(1), 522–530. https://doi.org/10.1016/J.ENERGY.2012.08.044
  28. Mohamed, M. H., Ali, A. M., & Hafiz, A. A. (2015). CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal, 18(1), 1–13. https://doi.org/10.1016/j.jestch.2014.08.002
  29. Quaranta, E., & Trivedi, C. (2021). The state-of-art of design and research for Pelton turbine casing, weight estimation, counterpressure operation and scientific challenges. Heliyon, 7(12), e08527. https://doi.org/10.1016/J.HELIYON.2021.E08527
  30. Rehman, W., Rehman, F., & Malik, M. Z. (2018). A review of darrieus water turbines. American Society of Mechanical Engineers, Power Division (Publication) POWER, 2(March). https://doi.org/10.1115/POWER2018-7547
  31. Renewable Energy Agency, I. (2023). World Energy Transitions Outlook 2023: 1.5°C Pathway. www.irena.org
  32. Rogowski, K., Kr, G., & Bangga, G. (2021). Numerical Study on the Aerodynamic Characteristics of the NACA 0018 Airfoil at Low Reynolds Number for Darrieus Wind Turbines Using the Transition SST Model. Processes 2021, 9(3), 477. https://doi.org/10.3390/pr9030477
  33. Saad, A. S., AbdelSalam, A. M., Sakr, I. M., & El-Askary, W. A. (2017). Performance Analysis of a Helical Savonius Wind Turbine with Modified Rotor. International Conference on Aerospace Sciences and Aviation Technology, 17(Aerospace sciences and aviation technology, ASAT-17 – April 11-13, 2017), 1–14. https://doi.org/10.21608/ASAT.2017.22459
  34. Saini, G., & Saini, R. P. (2018). Numerical Investigation of the Effect of Blade Profile of a Darrieus Hydrokinetic Turbine. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, UPCON 2018. https://doi.org/10.1109/UPCON.2018.8597073
  35. Saini, G., & Saini, R. P. (2020). Comparative investigations for performance and self-starting characteristics of hybrid and single Darrieus hydrokinetic turbine. Energy Reports, 6, 96–100. https://doi.org/10.1016/j.egyr.2019.11.047
  36. Saryazdi, S. M. E., & Boroushaki, M. (2018). 2D numerical simulation and sensitive analysis of H-darrieus wind turbine. International Journal of Renewable Energy Development, 7(1), 23–34. https://doi.org/10.14710/ijred.7.1.23-24
  37. Tan, K. W., Kirke, B., & Anyi, M. (2021). Small-scale hydrokinetic turbines for remote community electrification. Energy for Sustainable Development, 63, 41–50. https://doi.org/10.1016/J.ESD.2021.05.005
  38. Tigabu, M. T., Khalid, M. S. U., Wood, D., & Admasu, B. T. (2022). Some effects of turbine inertia on the starting performance of vertical-axis hydrokinetic turbine. Ocean Engineering, 252, 111143. https://doi.org/10.1016/J.OCEANENG.2022.111143
  39. Vargas, J. A., Clavijo, F. V., & Torres Gómez, C. (2016). Desarrollo del prototipo de un hidrogenerador eléctrico como alternativa de generación de energía limpia en zonas rurales Development of the prototype of an electric hydro generator as an alternative for generating clean energy in rural areas. Ingeniare, 12(20), 91–101. https://doi.org/10.18041/1909-2458/ingeniare.20.411
  40. Wardhana, W., & Fridayana, E. N. (2020). Aerodynamic Performance Analysis of Vertical Axis Wind Turbine (VAWT) Darrieus Type H-Rotor using Computational Fluid Dynamics (CFD) Approach. December, 5–11. https://doi.org/10.5220/0008542700050011
  41. Welsby, D., Price, J., Pye, S., & Ekins, P. (2021). Unextractable fossil fuels in a 1.5 °C world. Nature 2021 597:7875, 597(7875), 230–234. https://doi.org/10.1038/s41586-021-03821-8
  42. XM. (2022). 3.72% aumentó en febrero la demanda de energía eléctrica en Colombia - BNamericas. Bnamericas. https://www.bnamericas.com/es/noticias/372-aumento-en-febrero-la-demanda-de-energia-electrica-en-colombia
  43. Yadav, P. K., Kumar, A., & Jaiswal, S. (2023). A critical review of technologies for harnessing the power from flowing water using a hydrokinetic turbine to fulfill the energy need. Energy Reports, 9, 2102–2117. https://doi.org/10.1016/J.EGYR.2023.01.033
  44. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids A: Fluid Dynamics, 4(7), 1510–1520. https://doi.org/10.1063/1.858424
  45. Yunus Cengel, J. C. (2006). Mecánica de fluidos Fundamentos y aplicaciones. https://books.google.com.co/books?id=higREQAAQBAJ

Last update:

No citation recorded.

Last update: 2025-02-09 02:08:25

No citation recorded.