skip to main content

Nipa-based bioethanol as a renewable pure engine fuel: A preliminary performance testing and carbon footprint quantification

1Department of Mechanical Engineering, Mariano Marcos State University, Brgy.16 Quiling Sur, Batac City, Ilocos Norte, 2906, Philippines

2School of Graduate Studies, Mapua University, Muralla Street, Intramuros, Manila, 1002, Philippines

3School of Mechanical, Manufacturing, and Energy Engineering, Mapua University, Muralla Street, Intramuros, Manila, 1002, Philippines

4 Department of Biological Sciences, Mariano Marcos State University, Brgy.16 Quiling Sur, Batac City, Ilocos Norte, 2906, Philippines

5 National Bioenergy Research and Innovation Center, Mariano Marcos State University, Brgy. 16 Quiling Sur, Batac City, Ilocos Norte, 2906, Philippines

View all affiliations
Received: 4 Sep 2024; Revised: 29 Oct 2024; Accepted: 20 Nov 2024; Available online: 28 Nov 2024; Published: 1 Jan 2025.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The need for alternative fuels remains a growing concern in alleviating the depletion of fossil fuels for transportation to address one of the objectives of the Sustainable Development Goals (SDG 7: Alternative and Clean Energy) despite the emerging use of Electric Vehicles. Nipa fruticans has been introduced as a promising feedstock for bioethanol production, but its performance as a pure engine engine fuel must be determined, and its carbon footprint must be quantified to assess its impact on the environment were this paper aimed. The CO2 emissions of this study was quantified using ISO 14040 methodologies, considering direct and indirect emissions from production to utilization with key ethanol properties tested according to ASTM standards. A carbureted motorcycle was modified to a fuel injection (FI) system to assess fuel performance, with metrics like power output, consumptions, and emissions were evaluated. Results show that nipa-based bioethanol, H95F and H99F, can serve as renewable pure engine fuels, with carbon footprints of 0.2353 and 2.633 kg CO2eq per Liter respectively with 1.08% lower of kg CO2eq per Liter emissions and 32.7% lower production cost compared to fermented sugar. As pure engine fuel resulted in lowering CO emissions by 171.79% and 167.59%; and lower HC emissions 172.89% and 191.34% respectively compared to E10. These findings demonstrated the potential of nipa bioethanol as a clean and sustainable energy solution. It is recommended however that ethanol yield and distillation process be further improved and explore pure ethanol as alternative fuel to hybrid vehicles as 100% renewable vehicles.

Fulltext View|Download
Keywords: Nipa-based bioethanol; nipa carbon footprint; hydrous ethanol; nipa carbon quantification; engine performance
Funding: Mariano Marcos State University; USAID Stride; Mapua University

Article Metrics:

  1. Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research International, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6
  2. Abram, N. J., Henley, B. J., Sen Gupta, A., Lippmann, T. J. R., Clarke, H., Dowdy, A. J., Sharples, J. J., Nolan, R. H., Zhang, T., Wooster, M. J., Wurtzel, J. B., Meissner, K. J., Pitman, A. J., Ukkola, A. M., Murphy, B. P., Tapper, N. J., & Boer, M. M. (2021). Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment, 2(1). https://doi.org/10.1038/s43247-020-00065-8
  3. Acda, M. N. (2022). Production, regulation, and standardization of biofuels: a Philippine perspective. In Value-Chain of Biofuels (pp. 553–570). Elsevier. https://doi.org/10.1016/B978-0-12-824388-6.00001-4
  4. Adian, F., Sugiarto, B., Wibowo, C. S., Primayandi, D. D., Hargiyanto, R., & Krisnanto, H. (2020). Comparison of the effect of 10% ethanol addition in 88 and 98 gasoline RON on motorcycle engine performance. International Conference On Emerging Applications In Material Science And Technology: Iceamst 2020. International Conference On Emerging Applications In Material Science And Technology: Iceamst 2020, Namakkal, India. https://doi.org/10.1063/5.0002824
  5. Agência Nacional do Petróleo. (2019). Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis. Agência Nacional Do Petróleo. https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico
  6. Agrawal, D., Awani, K., Nabavi, S. A., Balan, V., Jin, M., Aminabhavi, T. M., Dubey, K. K., & Kumar, V. (2023). Carbon emissions and decarbonisation: The role and relevance of fermentation industry in chemical sector. Chemical Engineering Journal (Lausanne, Switzerland: 1996), 475(146308), 146308. https://doi.org/10.1016/j.cej.2023.146308
  7. Ahmad Dar, R., Ahmad Dar, E., Kaur, A., & Gupta Phutela, U. (2018). Sweet sorghum-a promising alternative feedstock for biofuel production. Renewable and Sustainable Energy Reviews, 82, 4070–4090. https://doi.org/10.1016/j.rser.2017.10.066
  8. Audi, M., Ali, A., & Kassem, M. (2020). Greenhouse gases: A review of losses and benefits. International Journal of Energy Economics and Policy, 10(1), 403–418. https://doi.org/10.32479/ijeep.8416
  9. Avand, M., Moradi, H. R., & Ramazanzadeh Lasboyee, M. (2021). Spatial prediction of future flood risk: An approach to the effects of climate change. Geosciences, 11(1), 25. https://doi.org/10.3390/geosciences11010025
  10. Awogbemi, O., Kallon, D. V. V., Onuh, E. I., & Aigbodion, V. S. (2021). An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies, 14(18), 5687. https://doi.org/10.3390/en14185687
  11. Chai, S. Y. W., Ngu, L. H., & How, B. S. (2022). Review of carbon capture absorbents for CO2utilization. Greenhouse Gases Science and Technology, 12(3), 394–427. https://doi.org/10.1002/ghg.2151
  12. Corpus, R. M. B., Quiros, E., Lomotan, R. J., & Denoga, G. J. (2020, April 14). A preliminary comparison of fuel economy estimates from driving cycles developed using road load energy-based and microtrip methods. SAE Technical Paper Series, Article 2020- 01–1281. WCX SAE World Congress Experience. https://doi.org/10.4271/2020-01-1281
  13. Costa, C. M., Barbosa, J. C., Castro, H., Gonçalves, R., & Lanceros-Méndez, S. (2021). Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries. Renewable and Sustainable Energy Reviews, 151(111548), 111548. https://doi.org/10.1016/j.rser.2021.111548
  14. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J. G. J., & Vignati, E. (2020). Fossil CO2 emissions of all world countries - 2020 Report, EUR 30358 EN. EUR 30358 EN, Publications Office of the European Union. Retrieved on May 5, 2024 from https://op.europa.eu/en/publication-detail/-/publication/71b9adf3-f3dc-11ea-991b-01aa75ed71a1/language-en/
  15. Dahman, Y., Syed, K., Begum, S., Roy, P., & Mohtasebi, B. (2019). Biofuels. In Biomass, Biopolymer-Based Materials, and Bioenergy (pp. 277–325). Elsevier. https://doi.org/10.1016/B978-0-08-102426-3.00014-X
  16. de Souza, A. P., Grandis, A., Leite, D. C. C., & Buckeridge, M. S. (2014). Sugarcane as a bioenergy source: History, performance, and perspectives for second-generation bioethanol. Bioenergy Research, 7(1), 24–35. https://doi.org/10.1007/s12155-013-9366-8
  17. Deb, N., Singh, R., Brooks, R. R., & Bai, K. (2021). A review of extremely fast charging stations for electric vehicles. Energies, 14(22), 7566. https://doi.org/10.3390/en14227566
  18. Demafelis, R., Obligado, A., Avilla, H., Magadia, B., Mawili, A. A., & Estante, E. P. (2024). Global Warming Potential and Life Cycle Cost of Conventional and Potentially Low-Carbon Philippine Swine Production Systems. Journal of Environmental Science and Management, 26(2). https://doi.org/10.47125/jesam/2023_2/06
  19. Demafelis, Rex, University of the Philippines Los Banos, Alcantara, A., Movillon, J., Espaldon, M. V., Pacardo, E., Flavier, M., Magadia, B., & Matanguihan, A. E. (2020). Sugarcane bioethanol processing plant in the Philippines: Energetics and water inventory. Journal of Environmental Science and Management, 23(2), 80–88. https://doi.org/10.47125/jesam/2020_2/09
  20. Demafilis, R., University of the Philippines Los Banos, Movillon, J., Predo, C., Maligalig, D., Eleazar, P. J., & Tongko-Magadia, B. (2020). Socio-economic and environmental impacts of bioethanol production from sugarcane (Saccharum officinarum) and molasses in the Philippines. Journal of Environmental Science and Management, 23(1), 96–110. https://doi.org/10.47125/jesam/2020_1/10
  21. Devi, A., Bajar, S., Sihag, P., Sheikh, Z. U. D., Singh, A., Kaur, J., Bishnoi, N. R., & Pant, D. (2023). A panoramic view of technological landscape for bioethanol production from various generations of feedstocks. Bioengineered, 14(1), 81–112. https://doi.org/10.1080/21655979.2022.2095702
  22. Dey, B., Roy, B., Datta, S., & Ustun, T. S. (2023). Forecasting ethanol demand in India to meet future blending targets: A comparison of ARIMA and various regression models. Energy Reports, 9, 411–418. https://doi.org/10.1016/j.egyr.2022.11.038
  23. Dhande, D. Y., Sinaga, N., & Dahe, K. B. (2021). Study on combustion, performance and exhaust emissions of bioethanol-gasoline blended spark ignition engine. Heliyon, 7(3), e06380. https://doi.org/10.1016/j.heliyon.2021.e06380
  24. Duarte Souza Alvarenga Santos, N., Rückert Roso, V., Teixeira Malaquias, A. C., & Coelho Baêta, J. G. (2021). Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation. Renewable and Sustainable Energy Reviews, 148(111292), 111292. https://doi.org/10.1016/j.rser.2021.111292
  25. Ebi, K. L., Vanos, J., Baldwin, J. W., Bell, J. E., Hondula, D. M., Errett, N. A., Hayes, K., Reid, C. E., Saha, S., Spector, J., & Berry, P. (2021). Extreme weather and climate change: Population health and health system implications. Annual Review of Public Health, 42(1), 293–315. https://doi.org/10.1146/annurev-publhealth-012420-105026
  26. Elshenawy, A. A., Abdel Razik, S. M., & Gad, M. S. (2023). Modeling of combustion and emissions behavior on the effect of ethanol–gasoline blends in a four stroke SI engine. Advances in Mechanical Engineering, 15(3), 168781322311571. https://doi.org/10.1177/16878132231157178
  27. Flammini, A., Adzmir, H., Karl, K., and Tubiello, F. N.: Quantifying greenhouse gas emissions from wood fuel use by households, Earth Syst. Sci. Data, 15, 2179–2187. https://doi.org/10.5194/essd-2022-390
  28. Gadalla, M., Olujic, Z., Jobson, M., & Smith, R. (2006). Estimation and reduction of CO2 emissions from crude oil distillation units. Energy (Oxford, England), 31(13), 2398–2408. https://doi.org/10.1016/j.energy.2005.10.030
  29. Ghosh, A. (2020). Possibilities and challenges for the inclusion of the electric vehicle (EV) to reduce the carbon footprint in the transport sector: A review. Energies, 13(10), 2602. https://doi.org/10.3390/en13102602
  30. Goldemberg, J. (2008). The Brazilian biofuels industry. Biotechnology for Biofuels, 1(1), 6. https://doi.org/10.1186/1754-6834-1-6
  31. Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M. U., Alharby, H. F., Alzahrani, Y. M., Bamagoos, A. A., Hakeem, K. R., Ahmad, S., Nasim, W., Ali, S., Mansour, F., & EL Sabagh, A. (2022). Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.925548
  32. Hauer, M. E., Fussell, E., Mueller, V., Burkett, M., Call, M., Abel, K., McLeman, R., & Wrathall, D. (2019). Sea-level rise and human migration. Nature Reviews. Earth & Environment, 1(1), 28–39. https://doi.org/10.1038/s43017-019-0002-9
  33. Hiloidhari, M., Haran, S., Banerjee, R., & Rao, A. B. (2021). Life cycle energy–carbon–water footprints of sugar, ethanol and electricity from sugarcane. Bioresource Technology, 330(125012), 125012. https://doi.org/10.1016/j.biortech.2021.125012
  34. Horton, B. P., Khan, N. S., Cahill, N., Lee, J. S. H., Shaw, T. A., Garner, A. J., Kemp, A. C., Engelhart, S. E., & Rahmstorf, S. (2020). Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey. Npj Climate and Atmospheric Science, 3(1). https://doi.org/10.1038/s41612-020-0121-5
  35. Hsiao, S.-C., Chiang, W.-S., Jang, J.-H., Wu, H.-L., Lu, W.-S., Chen, W.-B., & Wu, Y.-T. (2021). Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas. The Science of the Total Environment, 764(144439), 144439
  36. IEA. (2020). Energy Technology Perspectives 2020. International Energy Agency. https://www.iea.org/reports/energy-technology-perspectives-2020
  37. Jaramilla, M. E., Quiros, E. N., & Laguitao, J. J. C. (2015). Power performance and fuel consumption of a spark ignition engine using different blends of ethanol gasoline. BIMP-EAGA Journal for Sustainable Tourism Development. https://doi.org/10.51200/bimpeagajtsd.v4i2.3196
  38. Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel (London, England), 301(121017), 121017
  39. Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: a review. Proceedings. Mathematical, Physical, and Engineering Sciences, 476(2243). https://doi.org/10.1098/rspa.2020.0351
  40. Jones, M. W., Abatzoglou, J. T., Veraverbeke, S., Andela, N., Lasslop, G., Forkel, M., Smith, A. J. P., Burton, C., Betts, R. A., van der Werf, G. R., Sitch, S., Canadell, J. G., Santín, C., Kolden, C., Doerr, S. H., & Le Quéré, C. (2022). Global and regional trends and drivers of fire under climate change. Reviews of Geophysics (Washington, D.C.: 1985), 60(3). https://doi.org/10.1029/2020rg000726
  41. Karp, S. G., Medina, J. D. C., Letti, L. A. J., Woiciechowski, A. L., Carvalho, J. C., Schmitt, C. C., Oliveira Penha, R., Kumlehn, G. S., & Soccol, C. R. (2021). Bioeconomy and biofuels: the case of sugarcane ethanol in Brazil. Biofuels, Bioproducts & Biorefining : Biofpr, 15(3), 899–912. https://doi.org/10.1002/bbb.2195
  42. Keen, S. (2022). The appallingly bad neoclassical economics of climate change. In Economics and Climate Emergency (pp. 79–107). Routledge. https://doi.org/10.4324/9781003174707-7
  43. Klüppel, H.-J. (2005). The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management Life cycle assessment Principles and framework - ISO 14044: Environmental management Life cycle assessment Requirements and guidelines. The International Journal of Life Cycle Assessment, 10(3), 165–165. https://doi.org/10.1065/lca2005.03.001
  44. Lawan Muhammad, U. (2018). Biofuels as the starring substitute to fossil fuels. Petroleum Science and Engineering, 2(1), 44. https://doi.org/10.11648/j.pse.20180201.17
  45. Li, D., Yu, X., Sun, P., Du, Y., Xu, M., Li, Y., Wang, T., & Zhao, Z. (2021). Effects of water ratio in hydrous ethanol on the combustion and emissions of a hydrous ethanol/gasoline combined injection engine under different excess air ratios. ACS Omega, 6(39), 25749–25761. https://doi.org/10.1021/acsomega.1c04065
  46. Liu, Wei, Placke, T., & Chau, K. T. (2022). Overview of batteries and battery management for electric vehicles. Energy Reports, 8, 4058–4084. https://doi.org/10.1016/j.egyr.2022.03.016
  47. Liu, Weiguo, Zhang, Z., Xie, X., Yu, Z., von Gadow, K., Xu, J., Zhao, S., & Yang, Y. (2017). Analysis of the global warming potential of biogenic CO2 emission in life cycle assessments. Scientific Reports, 7(1). https://doi.org/10.1038/srep39857
  48. Loyte, A., Suryawanshi, J., Bhiogade, G., Devarajan, Y., & Subbiah, G. (2022). Recent developments in utilizing hydrous ethanol for diverse engine technologies. Genie Des Procedes [Chemical Engineering and Processing], 177(108985), 108985. https://doi.org/10.1016/j.cep.2022.108985
  49. M. Gatdula, K., B. Demafelis, R., & G. Bataller, B. (2021). Comparative analysis of bioethanol production from different potential biomass sources in the Philippines. In Bioethanol Technologies. IntechOpen. https://doi.org/10.5772/intechopen.94357
  50. Made Suarta, I., Nyoman Gede Baliarta, I., Sopan Rahtika, I. P. G., & Sunu, P. W. (2018). The role of hydrogen bonds of the azeotropic hydrous ethanol fuel composition to the exhaust emissions. Journal of Physics. Conference Series, 953, 012070. https://doi.org/10.1088/1742-6596/953/1/012070
  51. Madigal, J. P. T., Cariaga, J. F., Suarez, T. C. E., & & Agrupis, S. C. (2020). Assessment of the physico-chemico and microbiological changes during nipa (Nypa fruticans) sap fermentation collected from different sites in Cagayan province, Philippines. Indian Journal of Science and Technology, 13(32), 3230–3236. https://doi.org/10.17485/IJST/v13i32.1251
  52. Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318
  53. Mannan, M., Nahid, Sanjoy, & Karnwal, A. (2017). Saccharomyces cerevisiae Bio-Ethanol Production, A Sustainable Energy Alternative. A Sustainable Energy Alternative.. Asian Journal of Microbiology, 20. Retrieved on September 30, 2024 from https://www.researchgate.net/publication/322077095_Saccharomyces_cerevisiae_Bio-Ethanol_Production_A_Sustainable_Energy_Alternative
  54. Mateo, N. E. R., Ulep, R. A., Lucas, M. P., Agrupis, S. C., Sagadraca, J., & Baga, C. (2022). An overview on the viability of hydrous bioethanol as gasoline fuel blend in the Philippines. In The AUN/SEED-Net Joint Regional Conference in Transportation, Energy, and Mechanical Manufacturing Engineering (pp. 301–314). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1968-8_24
  55. Mateo, N. E. R., Ulep, R. A., Rosario, J. I., Lucas, M. P., Agrupis, S. C., Sagadraca, J. M., & Baga, C. C. (2023). Nipa Sap (Nypa fruitican) as Supplementary Feedstock for Bioethanol Production in the Philippines: The Pamplona Experience. In Springer Proceedings in Earth and Environmental Sciences (pp. 19–28). Springer International Publishing. https://doi.org/10.1007/978-3-031-26365-1_2
  56. Melo, T. C. C. de, Machado, G. B., Belchior, C. R. P., Colaço, M. J., Barros, J. E. M., de Oliveira, E. J., & de Oliveira, D. G. (2012). Hydrous ethanol–gasoline blends – Combustion and emission investigations on a Flex-Fuel engine. Fuel (London, England), 97, 796–804. https://doi.org/10.1016/j.fuel.2012.03.018
  57. Mohammed, M. K., Balla, H. H., Al-Dulaimi, Z. M. H., Kareem, Z. S., & Al-Zuhairy, M. S. (2021). Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Studies in Thermal Engineering, 25(100891), 100891. https://doi.org/10.1016/j.csite.2021.100891
  58. Mueller, S., Dennison, G., & Liu, S. (2021). An assessment on ethanol-blended gasoline/diesel fuels on cancer risk and mortality. International Journal of Environmental Research and Public Health, 18(13), 6930. https://doi.org/10.3390/ijerph18136930
  59. Muhaji, & Sutjahjo, D. H. (2018). The characteristics of bioethanol fuel made of vegetable raw materials. IOP Conference Series. Materials Science and Engineering, 296, 012019. https://doi.org/10.1088/1757-899X/296/1/012019
  60. Namchancharoen, T., Papong, S., Malakul, P., & Mungcharoen, T. (2015, May 15). The carbon and water footprint assessment of cassava-based bioethanol production in Thailand. International Conference on Biological, Environment and Food Engineering (BEFE-2015) May 15-16, 2015 Singapore. International Conference on Biological, Environment and Food Engineering. https://doi.org/10.15242/iicbe.c0515039
  61. Nazari, M. T., Mazutti, J., Basso, L. G., Colla, L. M., & Brandli, L. (2021). Biofuels and their connections with the sustainable development goals: a bibliometric and systematic review. Environment Development and Sustainability, 23(8), 11139–11156. https://doi.org/10.1007/s10668-020-01110-4
  62. Nicholls, R. J., Lincke, D., Hinkel, J., Brown, S., Vafeidis, A. T., Meyssignac, B., Hanson, S. E., Merkens, J.-L., & Fang, J. (2021). A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nature Climate Change, 11(4), 338–342. https://doi.org/10.1038/s41558-021-00993-z
  63. Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., & Yap, P.-S. (2023). Cost, environmental impact, and resilience of renewable energy under a changing climate: a review. Environmental Chemistry Letters, 21(2), 741–764. https://doi.org/10.1007/s10311-022-01532-8
  64. Paenpong, P. P. (2023). Development of electronic fuel Injection system through the use of Arduino Mega 2560 microcontroller. Journal of Engineering and Innovation, 34–43. Retrieved on March 5, 2024 from https://ph02.tci-thaijo.org/index.php/eng_ubu/article/view/244259/168520
  65. Paluri, B., & Patel, D. (2022). Combustion and performance characteristics of SI engine with bioethanol blended fuels. International Journal of Energy Research, 46(15), 24454–24464. https://doi.org/10.1002/er.8759
  66. Prasetyo, C. P., Effendi, A. J., & Chaerul, M. (2024). Analysis of the potential and characteristics of Nipa (Nypa fruticans) as a sustainable biofuel alternative source in Indonesia. E3S Web of Conferences, 485, 03001. https://doi.org/10.1051/e3sconf/202448503001
  67. Puangpee, S., & Chongkhong, S. (2016). Optimization of nipa sap preparation for ethanol production. Proceedings of the 2016 International Conference on Advanced Materials Science and Environmental Engineering. 2016 International Conference on Advanced Materials Science and Environmental Engineering, Chiang Mai, Thailand. https://doi.org/10.2991/amsee-16.2016.9
  68. Rahman, K.-S., Rahman, M. M., Dana, N. H., Adib, A., Masud, A.-A.-, Hossain, M. T., Rakkibu, M. G., Adhikary, N., Debrot, A. O., & Islam, M. N. (2024). Nypa-based land uses and ecosystem services in the tropics: A review. Ecological Indicators, 159(111613), 111613. https://doi.org/10.1016/j.ecolind.2024.111613
  69. Rebugio, L. L., Dizon, J. T., & Espiritu, N. O. (2000). The woodfuel scenario and policy issues in the Philippines. AGRIS - International System for Agricultural Science and Technology. Retrieved on March 3, 2024 from https://www.semanticscholar.org/paper/The-woodfuel-scenario-and-policy-issues-in-the/3b313846d10f056dfbcdc711b5f5e32d99f1d4d3
  70. Republic of the Philippines. (2006). Republic Act No. 9367: An act to direct the use of biofuels, establishing for this purpose the biofuel program, appropriating funds therefore, and for other purposes. Retrieved on September 30, 2024 from https://www.officialgazette.gov.ph/2007/01/12/republic-act-no-9367/
  71. Rocque, R. J., Beaudoin, C., Ndjaboue, R., Cameron, L., Poirier-Bergeron, L., Poulin-Rheault, R.-A., Fallon, C., Tricco, A. C., & Witteman, H. O. (2021). Health effects of climate change: an overview of systematic reviews. BMJ Open, 11(6), e046333. https://doi.org/10.1136/bmjopen-2020-046333
  72. Rossi, L. M., Gallo, J. M. R., Mattoso, L. H. C., Buckeridge, M. S., Licence, P., & Allen, D. T. (2021). Ethanol from sugarcane and the Brazilian biomass-based energy and chemicals sector. ACS Sustainable Chemistry & Engineering, 9(12), 4293–4295. https://doi.org/10.1021/acssuschemeng.1c01678
  73. Sanap, P., Shetty, A., & Mahajan, Y. (2021). Dehydration – purification of aqueous ethyl alcohol by adsorption over molecular sieves: continuous operation. Journal of the Chinese Institute of Engineers, 44(5), 501–508. https://doi.org/10.1080/02533839.2021.1919557
  74. Scully, M. J., Norris, G. A., Alarcon Falconi, T. M., & MacIntosh, D. L. (2021). Carbon intensity of corn ethanol in the United States: state of the science. Environmental Research Letters, 16(4), 043001. https://doi.org/10.1088/1748-9326/abde08
  75. Strauss, B. H., Orton, P. M., Bittermann, K., Buchanan, M. K., Gilford, D. M., Kopp, R. E., Kulp, S., Massey, C., Moel, H. de, & Vinogradov, S. (2021). Economic damages from Hurricane Sandy attributable to sea level rise caused by anthropogenic climate change. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-22838-1
  76. Sumasgutner, P., Cunningham, S. J., Hegemann, A., Amar, A., Watson, H., Nilsson, J. F., Andersson, M. N., & Isaksson, C. (2023). Interactive effects of rising temperatures and urbanisation on birds across different climate zones: A mechanistic perspective. Global Change Biology, 29(9), 2399–2420. https://doi.org/10.1111/gcb.16645
  77. Sutarna, N., Bali, P. N., Antara, I. N. L., & Anakottapary, D. S. (2020). Fuel consumption analysis of injection system and carburetor system on Honda beat fi 2013. Logic, 20(3), 141–144. https://doi.org/10.31940/logic.v20i3.2170
  78. Tamunaidu, P., Matsui, N., Okimori, Y., & Saka, S. (2013). Nipa (Nypa fruticans) sap as a potential feedstock for ethanol production. Biomass & Bioenergy, 52, 96–102. https://doi.org/10.1016/j.biombioe.2013.03.005
  79. Tvinnereim, E., Lægreid, O. M., Liu, X., Shaw, D., Borick, C., & Lachapelle, E. (2020). Climate change risk perceptions and the problem of scale: evidence from cross-national survey experiments. Environmental Politics, 29(7), 1178–1198
  80. United Nations. (n.d.). Causes and effects of climate change | united nations. Retrieved September 25, 2024, from https://www.un.org/en/climatechange/science/causes-effects-climate-change
  81. Uppalapati, S., Jani, S. P., Raj, J. B., Rajaganapathy, C., Murugapoopathi, S., Shangdiar, S., & Amesho, K. T. T. (2024). Environmental impact and energy balance assessment in ethanol production from sugarcane molasses: A life cycle analysis in southern India. Renewable and Sustainable Energy Reviews, 204(114807), 114807. https://doi.org/10.1016/j.rser.2024.114807
  82. Velasco, M. M. (2024). DOE preparing standards for higher ethanol blend to gasoline products. Manila Bulletin. https://mb.com.ph/2024/01/12/doe-preparing-standards-for-higher-ethanol-blend-to-gasoline-products
  83. Wang, L., Quiceno, R., Price, C., Malpas, R., & Woods, J. (2014). Economic and GHG emissions analyses for sugarcane ethanol in Brazil: Looking forward. Renewable and Sustainable Energy Reviews, 40, 571–582. https://doi.org/10.1016/j.rser.2014.07.212
  84. Wang, X., Gao, J., Chen, Z., Chen, H., Zhao, Y., Huang, Y., & Chen, Z. (2022). Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review. Renewable Energy, 194, 504–525.Wang, X., Gao, J., Chen, Z., Chen, H., Zhao, Y., Huang, Y., & Chen, Z. (2022). Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review. Renewable Energy, 194, 504-525. https://doi.org/10.1016/j.renene.2022.05.132
  85. Yakın, A., & Behçet, R. (2021). Effect of different types of fuels tested in a gasoline engine on engine performance and emissions. International Journal of Hydrogen Energy, 46(66), 33325–33338. https://doi.org/10.1016/j.ijhydene.2021.07.133
  86. Yang, Q., & Chen, G. Q. (2013). Greenhouse gas emissions of corn–ethanol production in China. Ecological Modelling, 252, 176–184. https://doi.org/10.1016/j.ecolmodel.2012.07.011
  87. Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture (pp. 3–28). Elsevier. https://doi.org/10.1016/B978-0-12-819657-1.00001-3
  88. Yuttitham, M., Gheewala, S. H., & Chidthaisong, A. (2011). Carbon footprint of sugar produced from sugarcane in eastern Thailand. Journal of Cleaner Production, 19(17–18), 2119–2127. https://doi.org/10.1016/j.jclepro.2011.07.017
  89. Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol production from fermentable sugar juice. TheScientificWorldJournal, 2014, 1–11. https://doi.org/10.1155/2014/957102
  90. Zhang, Z., Jiaqiang, Chen, J., Zhu, H., Zhao, X., Han, D., Zuo, W., Peng, Q., Gong, J., & Yin, Z. (2019). Effects of low-level water addition on spray, combustion and emission characteristics of a medium speed diesel engine fueled with biodiesel fuel. Fuel (London, England), 239, 245–262. https://doi.org/10.1155/2014/957102

Last update:

No citation recorded.

Last update: 2025-02-07 07:00:53

No citation recorded.