skip to main content

Energy harvesting through the triboelectric nanogenerator (TENG) based on polyurethane/cellulose nanocrystal

1Departamento de Ciencias Básicas Aplicadas, Universidad de Guadalajara, Tonalá 45425, Mexico

2Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, 44430, Mexico

Received: 9 Sep 2024; Revised: 29 Oct 2024; Accepted: 6 Nov 2024; Available online: 11 Nov 2024; Published: 15 Nov 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study investigates how physical and mechanical properties affect the performance of triboelectric nanogenerators (TENGs). Polyurethane (PU) was prepared using two methods: (i) one-step PU (non-chain extended polyurethane) and (ii) two-step PU (chain extended polyurethane) via the prepolymer method; both types were filled with different concentrations of nanocrystalline cellulose. Mechanical properties significantly influence the deformation at the material interface that occurs during contact or friction. Key surface characteristics, including surface energy, geometry, and physicochemical properties, affect the effective contact area and potential distribution. One-step PU with 0.1 % CNC demonstrates a maximum capacitance of 29.20 pF, a voltage of 2.04 V, an electric current of 0.43 µA and power of 0.89 µW, representing a 74.5 % increase in power compared to the neat one-step PU, exhibits significant potential for TENG applications. Performance improvements are associated with lower concentrations of cellulose nanocrystals, enhanced hydrogen bonding, and beneficial surface energy. The observed enhancements in output are attributed to improved internal polarization from well-dispersed crystalline nanocellulose, increased crystallinity of the soft segment, and reduced charge transfer mechanisms due to amino groups in the chain extender. However, the impact of the molecular structure and conformation of polyurethanes on triboelectrification remains unclear, highlighting the need for theoretical models and experimental data. This research provides a practical approach for developing stretchable triboelectric materials with enhanced mechanical properties, emphasizing the importance of considering factors such as mechanical parameters, nanofiller content, and surface physicochemical properties to optimize TENG design.
Fulltext View|Download
Keywords: Energy harvesting; Polyurethane; cellulose nanocrystal; Nanocomposites; Triboelectric nanogenerator

Article Metrics:

  1. Adonijah Graham, S., Dudem, B., Patnam, H., Mule, A. R., & Yu, J. S. (2020). Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters. ACS Energy Letters, 5(7), 2140-2148. https://doi.org/10.1021/acsenergylett.0c00635
  2. Antolín-Cerón, V. H., González-López, F. J., Astudillo-Sánchez, P. D., Barrera-Rivera, K. A., & Martínez-Richa, A. (2022). High-performance polyurethane nanocomposite membranes containing cellulose nanocrystals for protein separation. Polymers, 14(4), 831. https://doi.org/10.3390/polym14040831
  3. Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290-301. https://doi.org/10.1016/j.indcrop.2015.12.058
  4. Bakošová, D., & Bakošová, A. (2022). Testing of rubber composites reinforced with carbon nanotubes. Polymers, 14(15), 3039. https://doi.org/10.3390/polym14153039
  5. Bunriw, W., Harnchana, V., Chanthad, C., & Huynh, V. N. (2021). Natural rubber-TiO2 nanocomposite film for triboelectric nanogenerator application. Polymers, 13(13), 2213. DOI: 10.1039/c8nr05872e
  6. Chen, J., Guo, H., He, X., Liu, G., Xi, Y., Shi, H., & Hu, C. (2016). Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS applied materials & interfaces, 8(1), 736-744. https://doi.org/10.1021/acsami.5b09907
  7. Chen, S. Y., Zhuang, R. Q., Chuang, F. S., & Rwei, S. P. (2021). Synthetic scheme to increase the abrasion resistance of waterborne polyurethane–urea by controlling micro‐phase separation. Journal of Applied Polymer Science, 138(24), 50561. https://doi.org/10.1002/app.50561
  8. Cheng, B. X., Gao, W. C., Ren, X. M., Ouyang, X. Y., Zhao, Y., Zhao, H., ... & Li, R. K. (2022). A review of microphase separation of polyurethane: Characterization and applications. Polymer Testing, 107,107489. https://doi.org/10.1016/j.polymertesting.2022.107489
  9. Cheng, G., Lin, Z. H., Du, Z. L., & Wang, Z. L. (2014). Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS nano, 8(2), 1932-1939. https://doi.org/10.1021/nn406565k
  10. Cranston, E. D., & Gray, D. G. (2006). Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromolecules, 7(9), 2522-2530. https://doi.org/10.1021/bm0602886
  11. de Oliveira Patricio, P. S., Pereira, I. M., da Silva, N. C. F., Ayres, E., Pereira, F. V., & Oréfice, R. L. (2013). Tailoring the morphology and properties of waterborne polyurethanes by the procedure of cellulose nanocrystal incorporation. European Polymer Journal, 49(12), 3761-3769. https://doi.org/10.1016/j.eurpolymj.2013.08.006
  12. Erdemir, A., Eryilmaz, O. L., & Fenske, G. (2000). Synthesis of diamondlike carbon films with superlow friction and wear properties. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 18(4), 1987-1992. https://doi.org/10.1116/1.582459
  13. Fan, F. R., Tian, Z. Q., & Wang, Z. L. (2012). Flexible triboelectric generator. Nano energy, 1(2), 328-334. https://doi.org/10.1016/j.nanoen.2012.01.004
  14. Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., ... & Kenny, J. M. (2012). Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate polymers, 87(2), 1596-1605. https://doi.org/10.1016/j.carbpol.2011.09.066
  15. Frisch, M., & Clemente, F. MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino and G. Zhe, Gaussian, 9
  16. Gent, A. N. (1958). On the relation between indentation hardness and Young's modulus. Rubber Chemistry and Technology, 31(4), 896-906. https://doi.org/10.5254/1.3542351
  17. Guan, D., Cong, X., Li, J., Shen, H., Zhang, C., & Gong, J. (2021). Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy, 87, 106186. https://doi.org/10.1016/j.nanoen.2021.106186
  18. Guan, D., Cong, X., Li, J., Shen, H., Zhang, C., & Gong, J. (2021). Quantitative characterization of the energy harvesting performance of soft-contact sphere triboelectric nanogenerator. Nano Energy, 87, 106186. https://doi.org/10.1016/j.nanoen.2021.106186
  19. Guo, Z. H., Zhang, Z., An, K., He, T., Sun, Z., Pu, X., & Lee, C. (2023). A wearable multidimensional motion sensor for AI-enhanced VR sports. Research, 6, 0154. DOI: 10.34133/research.0154
  20. Hormaiztegui, M. E. V., Daga, B., Aranguren, M. I., & Mucci, V. (2020). Bio-based waterborne polyurethanes reinforced with cellulose nanocrystals as coating films. Progress in Organic Coatings, 144, 105649. https://doi.org/10.1016/j.porgcoat.2020.105649
  21. Hwang, H. J., Li, C. H., & Wang, C. S. (2006). Dielectric and thermal properties of dicyclopentadiene containing bismaleimide and cyanate ester. Part IV. Polymer, 47(4), 1291-1299. https://doi.org/10.1016/j.polymer.2005.12.040
  22. Jang, D., Kim, Y., Kim, T. Y., Koh, K., Jeong, U., & Cho, J. (2016). Force-assembled triboelectric nanogenerator with high-humidity-resistant electricity generation using hierarchical surface morphology. Nano Energy, 20, 283-293. https://doi.org/10.1016/j.nanoen.2015.12.021
  23. Jin, L., Xiao, X., Deng, W., Nashalian, A., He, D., Raveendran, V., ... & Chen, J. (2020). Manipulating relative permittivity for high-performance wearable triboelectric nanogenerators. Nano Letters, 20(9), 6404-6411. https://doi.org/10.1021/acs.nanolett.0c01987
  24. Jin, S., Wang, Y., Motlag, M., Gao, S., Xu, J., Nian, Q., ... & Cheng, G. J. (2018). Large‐area direct laser‐shock imprinting of a 3D biomimic hierarchical metal surface for triboelectric nanogenerators. Advanced materials, 30(11), 1705840. https://doi.org/10.1002/adma.201705840
  25. Khan, U., Blighe, F. M., & Coleman, J. N. (2010). Selective mechanical reinforcement of thermoplastic polyurethane by targeted insertion of functionalized SWCNTs. The Journal of Physical Chemistry C, 114(26), 11401-11408. https://doi.org/10.1021/jp102938q
  26. Kim, H. J., Yim, E. C., Kim, J. H., Kim, S. J., Park, J. Y., & Oh, I. K. (2017). Bacterial nano‐cellulose triboelectric nanogenerator. Nano Energy, 33, 130-137. https://doi.org/10.1016/j.nanoen.2017.01.035
  27. Kim, J. K., Han, G. H., Kim, S. W., Kim, H. J., Purbia, R., Lee, D. M., ... & Baik, J. M. (2023). Electric-field-driven interfacial trapping of drifting triboelectric charges via contact electrification. Energy & Environmental Science, 16(2), 598-609. https://doi.org/10.1039/D2EE03114K
  28. Kwak, S. S., Kim, S. M., Ryu, H., Kim, J., Khan, U., Yoon, H. J., ... & Kim, S. W. (2019). Butylated melamine formaldehyde as a durable and highly positive friction layer for stable, high output triboelectric nanogenerators. Energy & Environmental Science, 12(10), 3156-3163. https://doi.org/10.1039/C9EE01267B
  29. Lapčinskis, L., Linarts, A., Mālnieks, K., Kim, H., Rubenis, K., Pudzs, K., ... & Šutka, A. (2021). Triboelectrification of nanocomposites using identical polymer matrixes with different concentrations of nanoparticle fillers. Journal of Materials Chemistry A, 9(14), 8984-8990. https://doi.org/10.1039/D0TA12441A
  30. Lee, J. H., Hinchet, R., Kim, S. K., Kim, S., & Kim, S. W. (2015). Shape memory polymer-based self-healing triboelectric nanogenerator. Energy & Environmental Science, 8(12), 3605-3613. https://doi.org/10.1039/C5EE02711J
  31. Lee, S., Lee, Y., Kim, D., Yang, Y., Lin, L., Lin, Z. H., ... & Wang, Z. L. (2013). Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy, 2(6), 1113-1120. https://doi.org/10.1016/j.nanoen.2013.08.007
  32. Li, S., Fan, Y., Chen, H., Nie, J., Liang, Y., Tao, X., ... & Wang, Z. L. (2020). Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy & Environmental Science, 13(3), 896-907. https://doi.org/10.1039/C9EE03307F
  33. Li, S., Nie, J., Shi, Y., Tao, X., Wang, F., Tian, J., ... & Wang, Z. L. (2020). Contributions of different functional groups to contact electrification of polymers. Advanced Materials, 32(25), 2001307. https://doi.org/10.1002/adma.202001307
  34. Liang, Q., Yan, X., Gu, Y., Zhang, K., Liang, M., Lu, S., ... & Zhang, Y. (2015). Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating. Scientific reports, 5(1), 9080. https://doi.org/10.1038/srep09080
  35. Liu, Z., Li, S., Lin, S., Shi, Y., Yang, P., Chen, X., & Wang, Z. L. (2022). Crystallization-induced shift in a triboelectric series and even polarity reversal for elastic triboelectric materials. Nano letters, 22(10), 4074-4082. https://doi.org/10.1021/acs.nanolett.2c00767
  36. Lorenzini, R. G., Kline, W. M., Wang, C. C., Ramprasad, R., & Sotzing, G. A. (2013). The rational design of polyurea & polyurethane dielectric materials. Polymer, 54(14), 3529-3533. https://doi.org/10.1016/j.polymer.2013.05.003
  37. Mao, Y., Geng, D., Liang, E., & Wang, X. (2015). Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy, 15, 227-234. https://doi.org/10.1016/j.nanoen.2015.04.026
  38. Marcos-Fernandez, A., Lozano, A. E., Gonzalez, L., & Rodriguez, A. (1997). Hydrogen Bonding in Copoly (ether− urea) s and Its Relationship with the Physical Properties. Macromolecules, 30(12), 3584-3592. https://doi.org/10.1021/ma9619039
  39. Margaronis, K., Busolo, T., Nair, M., Chalklen, T., & Kar-Narayan, S. (2021). Tailoring the triboelectric output of poly-L-lactic acid nanotubes through control of polymer crystallinity. Journal of Physics: Materials, 4(3), 034010. 10.1088/2515-7639/abf7de
  40. Mattia, J., & Painter, P. (2007). A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly (urethane− urea) and Their Blends with Poly (ethylene glycol). Macromolecules, 40(5), 1546-1554. https://doi.org/10.1021/ma0626362
  41. Mi, H. Y., Jing, X., Cai, Z., Liu, Y., Turng, L. S., & Gong, S. (2018). Highly porous composite aerogel based triboelectric nanogenerators for high performance energy generation and versatile self-powered sensing. Nanoscale, 10(48), 23131-23140. https://doi.org/10.1039/C8NR05872E
  42. Mi, H. Y., Jing, X., Zheng, Q., Fang, L., Huang, H. X., Turng, L. S., & Gong, S. (2018). High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing. Nano Energy, 48, 327-336. https://doi.org/10.1016/j.nanoen.2018.03.050
  43. Navarro-Baena, I., Kenny, J. M., & Peponi, L. (2014). Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose, 21, 4231-4246. https://doi.org/10.1007/s10570-014-0446-5
  44. Ning, N., Li, S., Sun, H., Wang, Y., Liu, S., Yao, Y., ... & Tian, M. (2017). Largely improved electromechanical properties of thermoplastic polyurethane dielectric elastomers by the synergistic effect of polyethylene glycol and partially reduced graphene oxide. Composites Science and Technology, 142, 311-320. https://doi.org/10.1016/j.compscitech.2017.02.015
  45. Niu, H., Du, X., Zhao, S., Yuan, Z., Zhang, X., Cao, R., ... & Li, C. (2018). Polymer nanocomposite-enabled high-performance triboelectric nanogenerator with self-healing capability. RSC advances, 8(54), 30661-30668. 10.1039/C8RA05305G
  46. Ourique, P. A., Ornaghi, F. G., Ornaghi, H. L., Wanke, C. H., & Bianchi, O. (2019). Thermo-oxidative degradation kinetics of renewable hybrid polyurethane–urea obtained from air-oxidized soybean oil. Journal of Thermal Analysis and Calorimetry, 137, 1969-1979. https://doi.org/10.1007/s10973-019-08089-9
  47. Owens, D. K., & Wendt, R. C. (1969). Estimation of the surface free energy of polymers. Journal of applied polymer science, 13(8), 1741-1747. https://doi.org/10.1002/app.1969.070130815
  48. Pimentel G.C: and Mc-Clellan A.L., The hydrogen bond, W:H. Freeman, San Francisco 1960
  49. Saralegi, A., Rueda, L., Martin, L., Arbelaiz, A., Eceiza, A., & Corcuera, M. A. (2013). From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites. Composites science and technology, 88, 39-47. https://doi.org/10.1016/j.compscitech.2013.08.025
  50. Shen, J., Li, Z., Yu, J., & Ding, B. (2017). Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy, 40, 282-288. https://doi.org/10.1016/j.nanoen.2017.08.035
  51. Simpson, J. O., & Clair, A. S. (1997). Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films, 308, 480-485. https://doi.org/10.1016/S0040-6090(97)00481-1
  52. Smith, M., Chalklen, T., Lindackers, C., Calahorra, Y., Howe, C., Tamboli, A., ... & Kar-Narayan, S. (2020). Poly-L-lactic acid nanotubes as soft piezoelectric interfaces for biology: Controlling cell attachment via polymer crystallinity. ACS applied bio materials, 3(4), 2140-2149. https://doi.org/10.1021/acsabm.0c00012
  53. Sow, M., Lacks, D. J., & Mohan Sankaran, R. (2012). Dependence of contact electrification on the magnitude of strain in polymeric materials. Journal of Applied Physics, 112(8). https://doi.org/10.1063/1.4761967
  54. Sow, M., Lacks, D. J., & Mohan Sankaran, R. (2012). Dependence of contact electrification on the magnitude of strain in polymeric materials. Journal of Applied Physics, 112(8). https://doi.org/10.1063/1.4761967
  55. Sriphan, S., Charoonsuk, T., Maluangnont, T., Pakawanit, P., Rojviriya, C., & Vittayakorn, N.. Advanced Materials Technologies, 2020, 5(5), 2000001. https://doi.org/10.1002/admt.202000001
  56. Sun, J., Pu, X., Liu, M., Yu, A., Du, C., Zhai, J., ... & Wang, Z. L. (2018). Self-healable, stretchable, transparent triboelectric nanogenerators as soft power sources. ACS nano, 12(6), 6147-6155. https://doi.org/10.1021/acsnano.8b02479
  57. Sung, C. P., & Schneider, N. S. (1977). Temperature dependence of hydrogen bonding in toluene diisocyanate based polyurethanes. Macromolecules, 10(2), 452-458
  58. Šutka, A., Mālnieks, K., Lapčinskis, L., Kaufelde, P., Linarts, A., Bērziņa, A., ... & Knite, M. (2019). The role of intermolecular forces in contact electrification on polymer surfaces and triboelectric nanogenerators. Energy & Environmental Science, 12(8), 2417-2421. https://doi.org/10.1039/C9EE01078E
  59. Šutka, A., Mālnieks, K., Lapčinskis, L., Timusk, M., Kalniņš, K., Kovaļovs, A., ... & Grunlan, J. (2020). Contact electrification between identical polymers as the basis for triboelectric/flexoelectric materials. Physical Chemistry Chemical Physics, 22(23), 13299-13305. https://doi.org/10.1039/D0CP01947J
  60. Tao, X., Nie, J., Li, S., Shi, Y., Lin, S., Chen, X., & Wang, Z. L. (2021). Effect of photo-excitation on contact electrification at liquid–solid interface. ACS nano, 15(6), 10609-10617. https://doi.org/10.1021/acsnano.1c03358
  61. Tcho, I. W., Kim, W. G., Jeon, S. B., Park, S. J., Lee, B. J., Bae, H. K., ... & Choi, Y. K. (2017). Surface structural analysis of a friction layer for a triboelectric nanogenerator. Nano Energy, 42, 34-42. https://doi.org/10.1016/j.nanoen.2017.10.037
  62. Vatankhah, E., Tadayon, M., & Ramakrishna, S. (2021). Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization. Carbohydrate Polymers, 266, 118120. https://doi.org/10.1016/j.carbpol.2021.118120
  63. Wang, F., Yang, P., Tao, X., Shi, Y., Li, S., Liu, Z., ... & Wang, Z. L. (2021). Study of contact electrification at liquid-gas interface. ACS nano, 15(11), 18206-18213. https://doi.org/10.1021/acsnano.1c07158
  64. Wang, H. L., Guo, Z. H., Zhu, G., Pu, X., & Wang, Z. L. (2021). Boosting the power and lowering the impedance of triboelectric nanogenerators through manipulating the permittivity for wearable energy harvesting. ACS nano, 15(4), 7513-7521. https://doi.org/10.1021/acsnano.1c00914
  65. Wang, R., Fang, S., Xiao, Y., Gao, E., Jiang, N., Li, Y., ... & Baughman, R. H. (2019). Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science, 366(6462), 216-221. DOI: 10.1126/science.aax6182
  66. Wang, S., Zi, Y., Zhou, Y. S., Li, S., Fan, F., Lin, L., & Wang, Z. L. (2016). Molecular surface functionalization to enhance the power output of triboelectric nanogenerators. Journal of Materials Chemistry A, 4(10), 3728-3734. https://doi.org/10.1039/C5TA10239A
  67. Wang, X., Yao, C., Wang, F., & Li, Z. (2017). Cellulose‐based nanomaterials for energy applications. Small, 13(42), 1702240. https://doi.org/10.1002/smll.201702240
  68. Wang, Y., Yang, Y., & Wang, Z. L. (2017). Triboelectric nanogenerators as flexible power sources. npj Flexible Electronics, 1(1), 10. https://doi.org/10.1038/s41528-017-0007-8
  69. Wang, Z., Sun, B., Lu, X., Wang, C., & Su, Z. (2019). Molecular orientation in individual electrospun nanofibers studied by polarized AFM–IR. Macromolecules, 52(24), 9639-9645. https://doi.org/10.1021/acs.macromol.9b01778
  70. Xia, X., Chen, J., Guo, H., Liu, G., Wei, D., Xi, Y., ... & Hu, C. (2017). Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Research, 10, 320-330. https://doi.org/10.1007/s12274-016-1294-4
  71. Xu, C., Zhang, B., Wang, A. C., Zou, H., Liu, G., Ding, W., ... & Wang, Z. L. (2019). Contact-electrification between two identical materials: curvature effect. ACS nano, 13(2), 2034-2041. https://doi.org/10.1021/acsnano.8b08533
  72. Xu, C., Zhang, B., Wang, A. C., Zou, H., Liu, G., Ding, W., ... & Wang, Z. L. (2019). Contact-electrification between two identical materials: curvature effect. ACS nano, 13(2), 2034-2041. https://doi.org/10.1021/acsnano.8b08533
  73. Y Mi, X. Jing, Q. Zheng, L. Fang, H.-X Huang, L.-s. Turng, et al, Nonenergy 2018, 48327-336. https://doi.org/10.1016/j.nanoen.2017.08.035
  74. Yao, C., Hernandez, A., Yu, Y., Cai, Z., & Wang, X. (2016). Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy, 30, 103-108. https://doi.org/10.1016/j.nanoen.2016.09.036
  75. Yao, C., Yin, X., Yu, Y., Cai, Z., & Wang, X. (2017). Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Advanced Functional Materials, 27(30), 1700794. https://doi.org/10.1002/adfm.201700794
  76. Yao, C., Yin, X., Yu, Y., Cai, Z., & Wang, X. (2017). Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Advanced Functional Materials, 27(30), 1700794. https://doi.org/10.1002/adfm.201700794
  77. Yu, Y., & Wang, X. (2016). Chemical modification of polymer surfaces for advanced triboelectric nanogenerator development. Extreme Mechanics Letters, 9, 514-530. https://doi.org/10.1016/j.eml.2016.02.019
  78. Zakani, B., Entezami, S., Grecov, D., Salem, H., & Sedaghat, A. (2022). Effect of ultrasonication on lubrication performance of cellulose nano-crystalline (CNC) suspensions as green lubricants. Carbohydrate Polymers, 282, 119084. https://doi.org/10.1016/j.carbpol.2021.119084
  79. Żenkiewicz, M. (2007). Methods for the calculation of surface free energy of solids. Journal of Achievements in Materials and Manufacturing Engineering, 24(1), 137-145
  80. Zhang, L., Cai, H., Xu, L., Ji, L., Wang, D., Zheng, Y., ... & Wang, Z. L. (2022). Macro-superlubric triboelectric nanogenerator based on tribovoltaic effect. Matter, 5(5), 1532-1546. 10.1016/j.matt.2022.02.021
  81. Zhang, R., & Olin, H. (2020). Material choices for triboelectric nanogenerators: A critical review. EcoMat, 2(4), e12062. https://doi.org/10.1002/eom2.12062
  82. Zhao, Z., Zhou, L., Li, S., Liu, D., Li, Y., Gao, Y., ... & Wang, Z. L. (2021). Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nature communications, 12(1), 4686. https://doi.org/10.1038/s41467-021-25046-z
  83. Zheng, J., Wei, X., Li, Y., Dong, W., Li, X., Shiju, E., ... & Wen, J. (2021). Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy, 89, 106397. https://doi.org/10.1016/j.nanoen.2021.106397
  84. Zou, H., Zhang, Y., Guo, L., Wang, P., He, X., Dai, G., ... & Wang, Z. L. (2019). Quantifying the triboelectric series. Nature communications, 10(1), 1427. https://doi.org/10.1038/s41467-019-09461-x

Last update:

No citation recorded.

Last update: 2024-12-10 14:16:40

No citation recorded.