skip to main content

Subsurface Structure and Fluid Flow Analysis Using Geophysical Methods in the Geothermal Manifestation Area of Paguyangan, Brebes, Central Java

1Physic Department, Faculty of Science and Mathematics, Diponegoro University, Indonesia

2Department of Physics Faculty of Mathematics and Natural Sciences Diponegoro University, Semarang, Indonesia, Indonesia

3Department of Geology Faculty of Engineering Diponegoro University, Semarang, Indonesia, Indonesia

Published: 4 Nov 2016.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Citation Format:
Abstract

The indication of an active geothermal system is shown by the presence of surface manifestations such as the hot spring in Kedungoleng, Paguyangan, Brebes, Central Java. The temperature of the largest hot spring reaches 74o C and there is an assumption that this is an outflow of Mount Slamet geothermal system. DC-resistivity, Spontaneous Potential (SP) and Shallow Surface Temperature surveys were conducted to determine the subsurface structure as well as its correlation with the distribution of thermal fluid flow and shallow surface temperature. The subsurface resistivity has been investigated using 5 points of the Schlumberger configuration with 400 m separation for each point. For the fluid and temperature pattern, a measurement using 15 m interval in 3 lines of conducting fixed electrode configuration has been carried out, along with a 75 cm of depth of temperature measurement around the manifestation area. The thermal fluid is assumed by the low resistivity of 0.756 to 6.91Ωm and this indicates sandstone that has permeable characteristic. The fluid flows in two layers of Sandstone at more than 10 meter from surface of the first layer. Accordingly, the SP values have a range between -11- 11 mV and a depth interval of 13.42- 28.75 m and the distribution of temperature is between 24o-70oC at a tilting range of 46.06o-12.60o. Hence it can be inferred that the thermal fluid moves in the Northwest direction and is controlled by a fault structure stretching from Northwest to Southeast.

Article History: Received Feb 3, 2016; Received in revised form July 11, 2016; Accepted August 13, 2016; Available online

How to Cite This Article: Setyawan, A., Triahadini, A., Yuliananto, Y., Aribowo, Y., and Widiarso, D.A. (2016) Subsurface Structure and Fluid Flow Analyses Using Geophysical Methods in Geothermal Manifestation Area of Paguyangan, Brebes, Central Java. Int. Journal of Renewable Energy Development, 5(3), 171-177.

http://dx.doi.org/10.14710/ijred.5.3.171-177

Fulltext View|Download
Keywords: Paguyangan; resistivity;SP values; temperature; thermal fluide

Article Metrics:

  1. Aizawa, K. (2008). Classification Of Self-Potential Anomalies on Volcanoes and Possible Interpretations for Their Subsurface Structure. Journal of Volcanology and Geothermal Research, 175(3), 253-268
  2. Azwar, H. (2009). Pemodelan Lapisan Air Tanah Dalam (Akuifer) di Desa Tegalrojo Kab. Demak Berdasarkan Data Tahanan Jenis. Undergarduate thesis, Islamic State University Syarif Hidayatullah, Jakarta
  3. Broto,S. dan Afifah,R.S,. (2008). Pengolahan Data Geolistrik Dengan Metode Schlumberger. Journal of TEKNIK, 29 (2), 120-128
  4. Corwin, R.F. and D.B. Hoover. (1979). The Self-Potential Method In Geothermal Exploration. Journal of Geophysics,44, 226-245
  5. Djuri M.H, Samodra T.C, Amin S., and Gafoer. (1996). Peta Geologi Lembar Purwokerto dan Tegal Skala 1:100,000. Geological Map of Purwokerto and Tegal in 1:100,000 scale, Center of Geological Research and Development Bandung
  6. Hase, H., T. Ishido, S. Takakura, T. Hashimoto, K. Sato, and Y. Tanaka. (2003). Z Potential Measurement Of Volcanic Rocks From Aso Caldera. Journals of Geophysical Research Letters, 30(23)
  7. Hochstein, M.P and S. Sudarman. (2008) History of geothermal Exploration in Indonesia from 1970 to 2000. Journal of Geothermics, 37, 220–266
  8. Iswahyudi S, Widagdo A, Subana, and Herdianita N.R. (2013) Outflow Zone Indication of Geothermal System in Paguyangan Hotspring, Brebes, Central Java, Proceeding of 2nd Geothermal Workshop ITB Bandung
  9. Lira, E., R.Arcos, J.Clavero, A. Giavelli and C. Mayorga (undated). Shallow Temperature Measurements at Juncalito, A Geothermal prospect, Central Andes, Chile, Article at http://biblioserver.sernageomin.cl/opac/DataFiles/14127_pp_618_620.pdf., Accessed on 26 June 2015
  10. Mariyaningsih, D dan Setyawan, A. (2014). Interpretasi Struktur Bawahpermukaan Menggunakan Metode Geolistrik Konfigurasi Schlumberger di Area Manifestasi Panasbumi Kaliulo, Gunung Ungaran. Journals of Youngster Phyisics Journal, 2(1), 25-30
  11. Mauri, G., Williams-Jones, G., Saracco, G., and Zurek, J.M. (2012). A Geochemical and Geophysical Investigation of Hydrothermal Complex of Masaya Volcano, Nicaragua. Journal of Volcanology and Geothermal Research, 227-228
  12. Nurwidiyanto, M.I., Yustian, M., and Widada, S. (2006). Pengaruh Ukuran Butir Terhadap Porositas dan Permeabilitas pada Batupasir (Studi Kasus: Formasi Ngrayong, Kerek, Ledok Dan Selorejo), Semarang. Journal of Berkala Fisika Diponegoro University, 9(4), 191-195
  13. Olmsted, F.H. and S.E. Ingebritsen. (1986). Shallow Subsurface Temperature Surveys in The Basin And Range Province-II. Ground Teperatures In The Upsal Hogback Geothermal Area, West- Central Nevada, U.S.A. Journal of Geothermics, 15 (3), 267-275, Pergamin Journals
  14. Putrohari, R.D. (2013). Evaluasi Ringkas Geologi Waduk Penjalin. Appendix 2, Press Release IAGI Pebruary
  15. Ross, H.P. and J.C. Witcher. (1998). Self-Potential Surveys Of Three Geothermal Areas in The Southern Rio Grande Rift, New Mexico. Paper of New mexico geological society fall field conference guidebook
  16. Sasai, Y., M. Uyeshima, J. Zlotnicki, H. Utada, T. Kagiyama, T. Hashimoto and Y. Takahashi. (2002). Magnetic And Electric Field Observations During The 2000 Activity Of Miyake-Jima Volcano, Central Japan. Journal of Earth and Planetary Science Letters, 203, 769-777
  17. Sehah and Raharjo, S.A. (2011). Survei Metode Self Potential Menggunakan Elektroda Pot Berpori Untuk Mendeteksi Aliran Fluida Panas Bawahpermukaan di Kawasan Baturaden Kabupaten Banyumas Jawa Tengah, Purwokerto. Journal of Fisika FLUX, 8 (1): 7-11
  18. Singarimbun, A., Djamal, M. and Meilawati, F. (2012). Fluid Flow Direction Beneath Geothermal Area Based on Self–Potential Data (A Case Study at Mount Patuha, West Java, Indonesia. International Journal of Geology , 6(1)
  19. Suparno, S., Y. Daud, S. Rosid, D. Djuhana and Y. Sofyan. (2010). New Interpretation Of DC Resistivity Data In The Sibayak Geothermal Field, Indonesia. Proceeding of World Geothermal Congress
  20. Sundhoro, H.,Bakrun, B. Sulaeman, T. Situmorang, D. Risdianto and E. Sumardi. (2006). Reservoar dan Model Panas Bumi di G. Puma, Kabupaten Dompu, P. Sumbawa Berdasarkan Karakter Geologi, Geokimia dan Geofisika. Article of Buletin Sumber Daya Geologi, 1(3)
  21. Widagdo, A., Candra, A., Iswahyudi, S., and Abdullah, C.I. (2013). Pengaruh Struktur Geologi Gunung Slamet Muda dan Tua Terhadap Pola Sebaran Panasbumi. Proceeding of 4th Industrial Research Workshop and National Seminar Bandung State Polytechnic
  22. Verave, R.T., N. Mosusu and P. Irarue. (2015). 1D Interpretation of Schlumberger DC Resistivity Data from the Talasea Geothermal Field, West New Britain Province, Papua New Guinea. Proceedings of World Geothermal Congress

Last update:

No citation recorded.

Last update: 2024-10-11 03:24:46

No citation recorded.