skip to main content

Towards sustainable cogeneration in an oil refinery: A synergy between ISO 50001 and ISO 14001 management systems

Energy Systems Area, Faculty of Engineering, National Autonomous University of Mexico, Av. Universidad 3000, P.O. 04510 Mexico City, Mexico

Received: 26 Feb 2025; Revised: 18 Sep 2025; Accepted: 10 Oct 2025; Available online: 23 Oct 2023; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The most implemented standards worldwide for Energy Management Systems (EnMS) and Environmental Management Systems (EMS), ISO 50001 and ISO 14001 respectively, maintain a close correspondence due to the Harmonized Structure (HS) recently established by the International Organization for Standardization (ISO). However, achieving greater energy efficiency does not always align adequately with environmental issues, which is most evident in fossil fuel-based industries. Therefore, this work aims to propose a synergy based on coupling divergences between these standards and use it to evaluate technological changes in the cogeneration plant of an oil refinery, for better energy performance, environmental sustainability and the transition to renewable energy. The results show that the changes in technology increases electric efficiency from 14% to 45% and the rate of atmospheric emissions per unit of energy generated decreases by 17% on average. However, as fuel consumption doubles, the total emission rises by about 100%. This conflict between energy and environmental performance leads to an analysis of sustainability principles to better understand the relevance of the change in technology as an appropriate solution for the comprehensive improvement of the refinery’s energy and environmental performance and the gradual transition to renewable energy. The findings of this work shed light on how to deal with the fossil fuel-based industry in the global landscape of urgent sustainable development.

Fulltext View|Download
Keywords: Tula refinery; energy and environmental performance; technological change; sustainable resource management

Article Metrics:

  1. Al-Owaidh, M., Hazazi, A., Oji, S., & Dulaijan, A. (2022). Industrial Design Energy Efficiency and GHG Emission Reduction via Steam and Power Systems Optimization. IntechOpen. https://doi.org/10.5772/intechopen.102544
  2. Bajoria, A., Kanpariya, J., & Bera, A. (2024). Greenhouse gases and global warming. In Advances and technology development in greenhouse gases: emission, capture and conversion (pp. 121-135). Elsevier. https://doi.org/10.1016/B978-0-443-19066-7.00006-0
  3. Barigozzi, G., Perdichizzi, A. & Ravelli, S. (2014). Performance prediction and optimization of a waste-to-energy cogeneration plant with combined wet and dry cooling system. Applied Energy, 115, 65–74. https://doi.org/10.1016/j.apenergy.2013.11.024
  4. Bimüller, J.D. & Nord, L.O. (2015) Process Simulation and Plant Layout of a Combined Cycle Gas Turbine for Oshore Oil and Gas Installations. Journal of Power Technologies, 95, 40. Available at: https://papers.itc.pw.edu.pl/index.php/JPT/article/view/610
  5. Bodor, K., Szép, R., & Bodor, Z. (2022). Time series analysis of the air pollution around Ploiesti oil refining complex, one of the most polluted regions in Romania. Scientific reports, 12(1), 11817. https://doi.org/10.1038/s41598-022-16015-7
  6. Bugdol, M., Goranczewski, B. & Kadzielawski, G. (2021). Systemic support and environmental awareness in a normalized environmental management system consistent with ISO 14001. Management of Environmental Quality: An International Journal, 32(5), 949-969. https://doi.org/10.1108/MEQ-11-2020-0256
  7. Cardenas, Y., Acevedo, C. H., & Valencia, G. E. (2018). A systematic procedure to combine the integral management systems in a services sector company. Chemical Engineering Transactions ISSN, 67(2018)), 373-378. http://repositorio.ufps.edu.co/handle/ufps/1796
  8. Cengel, Y. & Boles, M. (2011). Thermodynamics, 7th edn., McGraw-Hill, New York
  9. Chaaben, N., Elleuch, Z., Hamdi, B., & Kahouli, B. (2024). Green economy performance and sustainable development achievement: empirical evidence from Saudi Arabia. Environment, Development and Sustainability, 26(1), 549-564. https://doi.org/10.1007/s10668-022-02722-8
  10. Chaves Almanza, F. D., & Leon de los Santos, G. (2024). Barriers Found in the Integrated Implementation of Energy and Environmental Management Systems Through ISO 50001 and ISO 14001. In International Conference on Water Energy Food and Sustainability (pp. 157-167). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-48532-9_15
  11. Chrysikopoulos, S., Chountalas, P. (2018). Integrating energy and environmental management systems to enable facilities to qualify for carbon funds. Energy & Environment, 29(6), 938-956. https://doi.org/10.1177/0958305X18762586
  12. Chua, X. Y., & Foo, D. C. (2021). Optimisation of cogeneration system and fuel inventory with automated targeting model. Clean Technologies and Environmental Policy, 23(8), 2369-2383. https://doi.org/10.1007/s10098-021-02150-8
  13. Dănescu, T., Matei, R. B., & Constantinescu, L. (2021). Evolutionary benchmarks in sustainability reporting. Incursion from the Brundtland Report to the Sustainable Development Goals. Acta Marisiensis. Series Oeconomica, 2, 49-60. https://doi.org/10.2478/amso-2021-0008
  14. El-Halwagi, M., Harell, D., & Spriggs, H. D. (2009). Targeting cogeneration and waste utilization through process integration. Applied Energy, 86(6), 880-887. https://doi.org/10.1016/j.apenergy.2008.08.011
  15. Esteves, F., Carlos Cardoso, J., Leitão, S., & Pires, E. J. S. (2025). Energy Audit in Wastewater Treatment Plant According to ISO 50001: Opportunities and Challenges for Improving Sustainability. Sustainability, 17(5), 2145. https://doi.org/10.3390/su17052145
  16. Filonchyk, M., & Peterson, M. P. (2023). NO2 emissions from oil refineries in the Mississippi Delta. Science of The Total Environment, 898, 165569. https://doi.org/10.1016/j.scitotenv.2023.165569
  17. Filonchyk, M., Peterson, M. P., Zhang, L., Hurynovich, V., & He, Y. (2024). Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Science of The Total Environment, 935, 173359. https://doi.org/10.1016/j.scitotenv.2024.173359
  18. Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Landschützer, P., ... & Zeng, J. (2024). Global carbon budget 2024. Earth System Science Data Discussions, 2024, 1-133. https://doi.org/10.5194/essd-2024-519
  19. Frunzulica, R., Damian, A., Baciu, R., & Barbu, C. (2014). Analysis of a CHP Plant Operation for Residential Consumers. In Sustainable Energy in the Built Environment-Steps Towards nZEB: Proceedings of the Conference for Sustainable Energy (CSE) 2014 (pp. 77-86). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-09707-7_6
  20. Gómez, I. (2020) Desarrollo Sostenible: Sustainable Development, 1st edn., Elearning, SL
  21. Granados-Hernández, E., López-Andrade, X., Vega-Rangel, E., Sosa-Echeverría, R., Alarcón-Jiménez, A. L., Fuentes-García, G., & Sánchez-Álvarez, P. (2021). Energy consumption and atmospheric emissions from refined petroleum in Mexico by 2030. Ingeniería, investigación y tecnología, 22(1), 0-0. https://doi.org/10.22201/fi.25940732e.2021.22.1.002
  22. Hayat, N., & Lohano, H. D. (2025). Factors Influencing a Manufacturing Firm to Adopt ISO 14001 Standard. Journal of the Knowledge Economy, 16(1), 4538-4574. https://doi.org/10.1007/s13132-024-02132-3
  23. Hou, H., Lu, W., Liu, B., Hassanein, Z., Mahmood, H., & Khalid, S. (2023). Exploring the role of fossil fuels and renewable energy in determining environmental sustainability: Evidence from OECD countries. Sustainability, 15(3), 2048. https://doi.org/10.3390/su15032048
  24. ISO. (2015). ISO 14001:2015, Environmental Management Systems—Requirements with Guidance for Use; ISO/IEC: Geneva, Switzerland
  25. ISO. (2018). ISO 50001:2018, Energy Management Systems—Requirements with Guidance for Use; ISO/IEC: Geneva, Switzerland
  26. ISO/IEC. (2024). Directives, Part 1 Procedures for the technical work, Consolidated ISO Supplement, Procedures specific to ISO
  27. Jeong, S., Lee, J. (2022). Environment and energy? The impact of environmental management systems on energy efficiency. Manufacturing & Service Operations Management, 24(3), 1311-1328. https://doi.org/10.1287/msom.2021.1057
  28. Jiang, T., Su, B., Kundzewicz, Z. W., & Zhao, W. (2025). New global climate actions: insight from COP29. https://doi.org/10.1093/nsr/nwae475
  29. Johri, A., Joshi, P., Kumar, S., & Joshi, G. (2024). Metaverse for Sustainable Development in a bibliometric analysis and systematic literature review. Journal of cleaner production, 435, 140610. https://doi.org/10.1016/j.jclepro.2024.140610
  30. Jovanović, B., Filipović, J. (2016). ISO 50001 standard-based energy management maturity model-proposal and validation in industry. Journal of Cleaner Production, 112, 2744-2755. https://doi.org/10.1016/j.jclepro.2015.10.023
  31. Kanna, V., Roseline, S., Balamurugan, K., Jeeva, S., & Santhiyagu, I. A. (2024). The effects of greenhouse gas emissions on global warming. Encyclopedia of Renewable Energy, Sustainability and the Environment, 1, 143-154
  32. Lak, S. Z., Rezaei, J., & Rahimpour, M. R. (2024). Health and pollution challenges of fossil fuels utilization. Encyclopedia of Renewable Energy, Sustainability and the Environment, 8, 155
  33. Lalinde, J.D.H., Castro, F.E., Rodríguez, J.E., Rangel, J.G.C., Sierra, C.A.T., Torrado, M.K.A., ... Pirela, V.J.B. (2018). Sobre el uso adecuado del coeficiente de correlación de Pearson: definición, propiedades y suposiciones. On the proper use of the Pearson correlation coefficient: definition, properties and assumptions. Archivos venezolanos de Farmacología y Terapéutica, 37(5), 587-595. https://www.redalyc.org/articulo.oa?id=55963207025
  34. Laskurain, I., Heras-Saizarbitoria, I., Casadesús, M. (2019). Do energy management systems add value to firms with environmental management systems? Environmental Engineering & Management Journal, 18, 17–30. https://doi.org/10.30638/eemj.2019.003
  35. Laskurain, L., Saizarbitoria, I.H., Casadesús, M. (2015). Fostering renewable energy sources by standards for environmental and energy management. Renewable and Sustainable Energy Reviews, 50, 1148-1156. https://doi.org/10.1016/j.rser.2015.05.050
  36. Law, A. (2022). How to build valid and credible simulation models. In 2022 Winter Simulation Conference (WSC). Singapore, 1283-1295, https://doi.org/10.1109/WSC57314.2022.10015411
  37. Li, Y., Mi, P., Li, W., & Zhang, S. (2018). Full operating conditions optimization study of new co-generation heating system based on waste heat utilization of exhausted steam. Energy Conversion and Management, 155, 91-99. https://doi.org/10.1016/j.enconman.2017.10.081
  38. Leon, G. (1998). Reconversión de calderas industriales convencionales para la mitigación de emisiones contaminantes. Reconversion of conventional industrial boilers to mitigate polluting emissions. Thesis. Universidad Nacional Autónoma de México. http://132.248.9.195/pdbis/258176/Index.html
  39. Martins, F. P., Almaraz, S. D. L., Junior, A. B. B., Azzaro-Pantel, C., & Parikh, P. (2024). Hydrogen and the sustainable development goals: Synergies and trade-offs. Renewable and Sustainable Energy Reviews, 204, 114796. https://doi.org/10.1016/j.rser.2024.114796
  40. Mishra, M., Desul, S., Santos, C. A. G., Mishra, S. K., Kamal, A. H. M., Goswami, S., ... & Baral, K. (2024). A bibliometric analysis of sustainable development goals (SDGs): a review of progress, challenges, and opportunities. Environment, development and sustainability, 26(5), 11101-11143. https://doi.org/10.1007/s10668-023-03225-w
  41. Mokheimer, E.M., Dabwan, Y.N. & Habib, M.A. (2017). Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia. Applied Energy, 185, 1268–1280. https://doi.org/10.1016/j.apenergy.2015.12.029
  42. Mosgaard, M. A., Bundgaard, A. M., & Kristensen, H. S. (2022). ISO 14001 practices–A study of environmental objectives in Danish organizations. Journal of Cleaner Production, 331, 129799. https://doi.org/10.1016/j.jclepro.2021.129799
  43. Muminović, F., Keran, H., Bajramović, E., Hadžihasanović, M., & Hadžić, M. (2023, November). Benefits of introduction and implementation of ISO 14001 standard in the meat industry. In Book of Proceedings. Seventh International Scientific Conference. ISSN 2566-4530
  44. Nguyen, T. Q., Slawnwhite, J. D., & Boulama, K. G. (2010). Power generation from residual industrial heat. Energy Conversion and Management, 51(11), 2220-2229. https://doi.org/10.1016/j.enconman.2010.03.016
  45. Pata, U. K., Erdogan, S., & Ozkan, O. (2023). Is reducing fossil fuel intensity important for environmental management and ensuring ecological efficiency in China?. Journal of Environmental Management, 329, 117080. https://doi.org/10.1016/j.jenvman.2022.117080
  46. Pinto, L.F.R., Tucci, H.N.P., Mummolo, G., Neto, G.C.d.O., Facchini, F. (2022). Circular Economy Approach on Energy Cogeneration in Petroleum Refining. Energies, 15,1713. https://doi.org/10.3390/en15051713
  47. Rampasso, I.S., Melo Filho, G.P., Anholon, R., de Araujo, R.A., Alves Lima, G.B., Perez Zotes, L., Leal Filho, W. (2019). Challenges presented in the implementation of sustainable energy management via ISO 50001: 2011. Sustainability, 11(22), 6321. https://doi.org/10.3390/su11226321
  48. Rossi, M., Comodi, G., Piacente, N., & Renzi, M. (2020). Energy recovery in oil refineries by means of a Hydraulic Power Recovery Turbine (HPRT) handling viscous liquids. Applied Energy, 270, 115097. https://doi.org/10.1016/j.apenergy.2020.115097
  49. Seltzer, M. (Aug. 21, 2020) Tough, timely and team-driven: 50 years of energy research. Princeton University News. Last acceded (Feb 2, 2025). https://www.princeton.edu/news/2020/08/21/tough-timely-and-team-driven-50-years-energy-research
  50. Sosa E, R., Vega, E., Wellens, A., Jaimes, M., Fuentes G, G., Granados H, E., ... & Mateos D, E. (2020). Reduction of atmospheric emissions due to switching from fuel oil to natural gas at a power plant in a critical area in Central Mexico. Journal of the Air & Waste Management Association, 70(10), 1043-1059. https://doi.org/10.1080/10962247.2020.1808113
  51. U.S. Environmental Protection Agency. (2024). AP-42. Retrieved from https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-fifth-edition-volume-i-chapter-1-external-0
  52. Ulyev, L., Vasiliev, M., & Boldyryev, S. (2018). Process integration of crude oil distillation with technological and economic restrictions. Journal of Environmental Management, 222, 454-464. https://doi.org/10.1016/j.jenvman.2018.05.062
  53. Umair, M., Yousuf, M. U., Cheema, A. R., & Ul-Haq, J. (2025). Assessing the environmental consequences of fossil fuel consumption in newly industrialized countries. International Journal of Energy Sector Management, 19(4), 1027-1044. https://doi.org/10.1108/IJESM-08-2024-0036
  54. Uriarte-Romero, R., Gil-Samaniego, M., Valenzuela-Mondaca, E., Ceballos-Corral, J. (2017). Methodology for the successful integration of an Energy Management System to an Operational Environmental System. Sustainability, 9(8), 1304. https://doi.org/10.3390/su9081304
  55. Valdés, H., & Leon, G. (2019). Cogeneration process technical viability for an apartment building: Case study in Mexico. Processes, 7(2), 93. https://doi.org/10.3390/pr7020093
  56. Walpole, R., Myers, R., Myers, S. (2012). Probability and Statistics for Engineers and Scientists. 9th edition, Pearson education
  57. Wu, J., Jia, Y., Cheng, M., & Xia, X. (2022). A complex network perspective on embodiment of air pollutants from global oil refining industry. Science of The Total Environment, 824, 153740. https://doi.org/10.1016/j.scitotenv.2022.153740

Last update:

No citation recorded.

Last update: 2025-10-21 19:22:22

No citation recorded.