skip to main content

View PDF Download fulltext

Radiator-type solar heating system with phase change material for residential thermal comfort

1Department of Mathematics and Physics, Faculty of Mining, Geology, and Civil Engineering, National University of San Cristóbal de Huamanga, Peru

2Software Engineering Department, Systems Engineering and Computer Science, National University of San Marcos, Peru

Received: 5 May 2025; Revised: 17 Oct 2025; Accepted: 28 Nov 2025; Available online: 18 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This paper presents the design, construction, and experimental thermal evaluation of a modular solar heating system that integrates heat collection, storage, and emission into a single compact unit. The prototype consists of a flat-plate solar air collector directly coupled to a radiator-type thermal storage module. The central innovation lies in the use of paraffin as a phase change material (PCM), encapsulated in twelve finned aluminum tubes. This configuration enables the storage unit to function simultaneously as a passive heat exchanger, ensuring a uniform and sustained release of the accumulated energy. Experimental results, obtained under a solar irradiance of 950 W/m², showed that the air temperature at the collector outlet exceeded 70 °C. During the discharge phase, the indoor ambient temperature remained within the thermal comfort range (20.5 °C–23.6 °C) for up to six hours, maintaining a 3–4 °C temperature difference relative to the outdoor environment. The latent heat storage capacity of the PCM effectively mitigated indoor temperature fluctuations, contributing to stable comfort conditions. In conclusion, the proposed system represents a significant innovation in passive solar energy technology, integrating the functions of collector, accumulator, and radiator into a low-cost, easily replicable modular device. Its constructive simplicity and thermal efficiency position it as a viable and sustainable solution for residential heating in cold climates and rural or hard-to-reach areas with limited energy access.

Keywords: Solar collector; phase change material; thermal comfort

Article Metrics:

  1. Akbari, V., Naghashzadegan, M., Kouhikamali, R., Afsharpanah, F., & Yaïci, W. (2022). Multi-Objective Optimization of a Small Horizontal-Axis Wind Turbine Blade for Generating the Maximum Startup Torque at Low Wind Speeds. Machines, 10(9). https://doi.org/10.3390/machines10090785
  2. Algarni, S. (2023). Evaluation of Performance Optimization of a Hybrid Solar Flat Plate Collector Integrated with Phase Change Material and Water Heat Sink. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4326076
  3. Ammar, M., Mokni, A., Mhiri, H., & Bournot, P. (2020). Numerical analysis of solar air collector provided with rows of rectangular fins. Energy Reports, 6, 3412–3424. https://doi.org/10.1016/J.EGYR.2020.11.252
  4. Athienitis, A. K. (2007). Design of a Solar Home with BIPV-Thermal System and Ground Source Heat Pump. 2nd Canadian Solar Buildings Conference Calgary, June 10 – 14, 2007, 1–9
  5. Bać, A., Nemś, M., Nemś, A., & Kasperski, J. (2019). Sustainable integration of a solar heating system into a single-family house in the climate of Central Europe-A case study. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154167
  6. Badiei, Z., Eslami, M., & Jafarpur, K. (2020). Performance improvements in solar flat plate collectors by integrating with phase change materials and fins: A CFD modeling. Energy, 192. https://doi.org/10.1016/j.energy.2019.116719
  7. Chi, F., Wang, R., & Wang, Y. (2021). Integration of passive double-heating and double-cooling system into residential buildings (China) for energy saving. Solar Energy, 225, 1026–1047. https://doi.org/10.1016/j.solener.2021.08.020
  8. Estrada Piqueras, A. (2018). Diseño, construcciòn y ensayo de un colector solar de aire. Universidad Politècnica de Madrid. https://blogs.upm.es/sostenibilidadupm/wp-content/uploads/sites/759/2020/03/TFM-Alberto-Estrada.pdf
  9. Godoy-Vaca, L., Vallejo-Coral, E. C., Martínez-Gómez, J., Orozco, M., & Villacreses, G. (2021). Predicted medium vote thermal comfort analysis applying energy simulations with phase change materials for very hot-humid climates in social housing in ecuador. Sustainability (Switzerland), 13(3), 1–31. https://doi.org/10.3390/su13031257
  10. Golovchak, R., Plummer, J., Kovalskiy, A., Holovchak, Y., Ignatova, T., Trofe, A., Mahlovanyi, B., Cebulski, J., Krzeminski, P., Shpotyuk, Y., Boussard-Pledel, C., & Bureau, B. (2023). Phase-change materials based on amorphous equichalcogenides. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-30160-7
  11. González Bayón, J. J., Borrajo Pérez, R., & Koulibaly, A. (2016). Thermal Performance of flat solar collectors for air heating working in natural convection. A parametric analysis. Ingeniería Mecánica, 19(1), 68–77. https://www.redalyc.org/pdf/2251/225146302001.pdf
  12. Gosztonyi, S., Stefanowicz, M., Bernardo, R., & Blomsterberg, Å. (2017). Multi-active façade for Swedish multi-family homes renovation - Evaluating the potentials of passive design measures. Journal of Facade Design and Engineering, 5(1), 7–21. https://doi.org/10.7480/jfde.2017.1.1425
  13. Hanif, M., Khan Khattak, M., Khan, M., Ramzan, M., & Abdurab. (2018). Energy, exergy and efficiency analysis of a flat plate solar collector used as air heater. Sains Malaysiana, 47(5). https://doi.org/10.17576/jsm-2018-4705-24
  14. Izadi, M., Taghavi, S. F., Neshat Safavi, S. H., Afsharpanah, F., & Yaïci, W. (2023). Thermal management of shelter building walls by PCM macro-encapsulation in commercial hollow bricks. Case Studies in Thermal Engineering, 47. https://doi.org/10.1016/j.csite.2023.103081
  15. Janampa, K. (2021). Acumulador solar térmico de placa compacta con material de cambio de fase para secadores familiares. Tecnia, 31(1), 56–66. https://doi.org/10.21754/tecnia.v21i1.1097
  16. Koca, A., Oztop, H. F., Koyun, T., & Varol, Y. (2008). Energy and exergy analysis of a latent heat storage system with phase change material for a solar collector. Renewable Energy, 33(4), 567–574. https://doi.org/10.1016/j.renene.2007.03.012
  17. Kong, X., Wang, L., Li, H., Yuan, G., & Yao, C. (2020). Experimental study on a novel hybrid system of active composite PCM wall and solar thermal system for clean heating supply in winter. Solar Energy, 195. https://doi.org/10.1016/j.solener.2019.11.081
  18. Kou, F., Gong, Q., Zou, Y., Mo, J., & Wang, X. (2023). Solar application potential and thermal property optimization of a novel zero-carbon heating building. Energy and Buildings, 279. https://doi.org/10.1016/j.enbuild.2022.112688
  19. Kou, F., Shi, S., Zhu, N., Song, Y., Zou, Y., Mo, J., & Wang, X. (2022). Improving the indoor thermal environment in lightweight buildings in winter by passive solar heating: An experimental study. Indoor and Built Environment, 31(9), 2257–2273. https://doi.org/10.1177/1420326X221091448
  20. Kukukaite, D. (2017). Sistema automática de control térmico para viviendas unifamiliares aprovechando techos de masa térmica. [Tesisi Maestrìa] Universidad Autònoma de Querètaro. https://ri-ng.uaq.mx/handle/123456789/1162
  21. Li, B., & Zhai, X. (2017). Experimental investigation and theoretical analysis on a mid-temperature solar collector/storage system with composite PCM. Applied Thermal Engineering, 124, 34–43. https://doi.org/10.1016/j.applthermaleng.2017.06.002
  22. Li, B., Zhai, X., & Cheng, X. (2018). Experimental and numerical investigation of a solar collector/storage system with composite phase change materials. Solar Energy, 164, 65–76. https://doi.org/10.1016/j.solener.2018.02.031
  23. Li, C., Zhang, B., Xie, B., Zhao, X., Chen, J., Chen, Z., & Long, Y. (2019). Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater. Sustainable Cities and Society, 44, 458–464. https://doi.org/10.1016/J.SCS.2018.10.041
  24. Li, T., Liu, Q., Liu, L., Li, Y., Yu, J., Wang, X., & Mao, Q. (2023). Feasibility study on solar coupled gas-fired boiler heating system retrofit in residential buildings in the HSCW zone of China. Case Studies in Thermal Engineering, 42. https://doi.org/10.1016/j.csite.2023.102698
  25. Luo, X., Hou, Q., Wang, Y., Xin, D., Gao, H., Zhao, M., & Gu, Z. (2017). Experimental on a novel solar energy heating system for residential buildings in cold zone of China. Procedia Engineering, 205, 3061–3066. https://doi.org/10.1016/j.proeng.2017.10.282
  26. Maka, A. O. M., & Alabid, J. M. (2022). Solar energy technology and its roles in sustainable development. Clean Energy, 6(3), 476–483. https://doi.org/10.1093/ce/zkac023
  27. Martínez Gómez, J., & Argüello Bravo, D. A. (2020). Colector solar térmico, con aire de superficie plana para calefacción y ventilación de áreas internas en viviendas y edificios. Universidad Internacional SEK. http://repositorio.uisek.edu.ec/handle/123456789/3740
  28. Mealla Sánchez, Luis Enrique; Bonaveri Arangoa, P. D. (2012). Construction alternatives using low-cost materials for the thermal test of box-type solar cookers. Revista ION, 25(1). http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-100X2012000100003
  29. Molina Castillo, J. R. (2016). Evaluación bioclimática de una vivienda rural alto andina de la comunidad de San Francisco de Raymina de Ayacucho. Universidad Nacional de Ingeniería. http://hdl.handle.net/20.500.14076/5327
  30. Moscoso Cáceres, M. (2016). Aplicación de los materiales de cambio de fase en el mobiliario interior como reguladores de temperatura (p. 81). Universidad Politècnica de Catalunya. http://hdl.handle.net/2117/102881
  31. Novas, N., Garcia, R. M., Camacho, J. M., & Alcayde, A. (2021). Advances in solar energy towards efficient and sustainable energy. Sustainability (Switzerland), 13(11). https://doi.org/10.3390/su13116295
  32. Plytaria, M. T., Tzivanidis, C., Alexopoulos, I., Bellos, E., & Antonopoulos, K. A. (2019). Comparison of two solar-assisted underfloor heating systems with phase change materials. International Journal of Thermodynamics, 22(3), 138–147. https://doi.org/10.5541/ijot.495329
  33. Plytaria, M. T., Tzivanidis, C., Bellos, E., & Antonopoulos, K. A. (2018). Energetic investigation of solar assisted heat pump underfloor heating systems with and without phase change materials. Energy Conversion and Management, 173, 626–639. https://doi.org/10.1016/j.enconman.2018.08.010
  34. Rabani, M., Bayera Madessa, H., & Nord, N. (2021). Achieving zero-energy building performance with thermal and visual comfort enhancement through optimization of fenestration, envelope, shading device, and energy supply system. Sustainable Energy Technologies and Assessments, 44. https://doi.org/10.1016/j.seta.2021.101020
  35. Rahimpour, Z., Faccani, A., Azuatalam, D., Chapman, A., & Verbič, G. (2017). Using Thermal Inertia of Buildings with Phase Change Material for Demand Response. Energy Procedia, 121. https://doi.org/10.1016/j.egypro.2017.07.483
  36. Sakhaei, S. A., & Valipour, M. S. (2021). Thermal behavior of a flat plate solar collector with simultaneous use of helically heat collecting tubes and phase change materials. Sustainable Energy Technologies and Assessments, 46. https://doi.org/10.1016/j.seta.2021.101279
  37. Sansaniwal, S. K., Mathur, J., & Mathur, S. (2022). Review of practices for human thermal comfort in buildings: present and future perspectives. International Journal of Ambient Energy, 43(1), 2097–2123. https://doi.org/10.1080/01430750.2020.1725629
  38. Shabgard, H., Song, L., & Zhu, W. (2018). Heat transfer and exergy analysis of a novel solar-powered integrated heating, cooling, and hot water system with latent heat thermal energy storage. Energy Conversion and Management, 175, 121–131. https://doi.org/10.1016/j.enconman.2018.08.105
  39. Shahzad, U., Elheddad, M., Swart, J., Ghosh, S., & Dogan, B. (2023). The role of biomass energy consumption and economic complexity on environmental sustainability in G7 economies. Business Strategy and the Environment, 32(1). https://doi.org/10.1002/bse.3175
  40. Sudhakar, P., & Cheralathan, M. (2021). Encapsulated PCM based double pass solar air heater: A comparative experimental study. Chemical Engineering Communications, 208(6), 788–800. https://doi.org/10.1080/00986445.2019.1641701
  41. United Nations. (2015). Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations
  42. Uribe, D., & Vera, S. (2021). Assessment of the effect of phase change material (PCM) glazing on the energy consumption and indoor comfort of an office in a semiarid climate. Applied Sciences (Switzerland), 11(20). https://doi.org/10.3390/app11209597
  43. Wang, D., Liu, H., Liu, Y., Xu, T., Wang, Y., Du, H., Wang, X., & Liu, J. (2019). Frost and High-temperature resistance performance of a novel dual-phase change material flat plate solar collector. Solar Energy Materials and Solar Cells, 201. https://doi.org/10.1016/j.solmat.2019.110086
  44. Wang, Z., Diao, Y., Zhao, Y., Chen, C., Liang, L., & Wang, T. (2020). Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays. Applied Energy, 261. https://doi.org/10.1016/j.apenergy.2019.114466
  45. Wang, Z., Diao, Y., Zhao, Y., Wang, T., Liang, L., & Chi, Y. (2018). Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays. Energy, 160, 924–939. https://doi.org/10.1016/J.ENERGY.2018.07.052
  46. Wang, Z., Diao, Y., Zhao, Y., Yin, L., Chen, C., Liang, L., & Wang, T. (2019). Performance investigation of an integrated collector–storage solar water heater based on lap-joint-type micro-heat pipe arrays. Applied Thermal Engineering, 153, 808–827. https://doi.org/10.1016/j.applthermaleng.2019.03.066
  47. Xiao, W., Wang, X., & Zhang, Y. (2009). Analytical optimization of interior PCM for energy storage in a lightweight passive solar room. Applied Energy, 86(10), 2013–2018. https://doi.org/10.1016/j.apenergy.2008.12.011
  48. Yu, J., Yang, C., & Tian, L. (2008). Low-energy envelope design of residential building in hot summer and cold winter zone in China. Energy and Buildings, 40(8), 1536–1546. https://doi.org/10.1016/j.enbuild.2008.02.020
  49. Zhai, P., Li, J., Lei, T., Zhu, J., & Novakovic, V. (2023). Indoor thermal comfort comparison between passive solar house with active solar heating and without active solar heating in Tibetan. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.11.004
  50. Zhang, G., Sun, Y., Wu, C., Yan, X., Zhao, W., & Peng, C. (2023). Low-cost and highly thermally conductive lauric acid–paraffin–expanded graphite multifunctional composite phase change materials for quenching thermal runaway of lithium-ion battery. Energy Reports, 9, 2538–2547. https://doi.org/10.1016/J.EGYR.2023.01.102
  51. Zhao, J., Liu, D., & Lu, S. (2022). Research on the Indoor Thermal Environment of Attached Sunspace Passive Solar Heating System Based on Zero-State Response Control Strategy. Applied Sciences (Switzerland), 12(2). https://doi.org/10.3390/app12020855
  52. Zhu, Y., Liu, L., Qiu, Y., & Ma, Z. (2022). Design of the passive solar house in Qinba mountain area based on sustainable building technology in winter. Energy Reports, 8, 1763–1777. https://doi.org/10.1016/j.egyr.2022.03.026

Last update:

No citation recorded.

Last update: 2026-01-11 08:41:11

No citation recorded.