skip to main content

Process Optimization in Simultaneous Saccharification and Fermentation System for Bioethanol and Silage Production from Pakchong Grass (Pennisetum purpureum cv Thailand)

1Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Jl. Arif Rahman Hakim, Surabaya, Indonesia, 60111, Indonesia

2Department of Engineering Physics, Institut Teknologi Sepuluh Nopember, Jl. Arif Rahman Hakim, Surabaya, Indonesia, 60111

3School of Interdisciplinary Management and Technology, Institut Teknologi Sepuluh Nopember, Jl. Cokroaminoto No. 12A, DR. Soetomo, Surabaya, Indonesia 60264, Indonesia

Received: 13 Jul 2025; Published: 12 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

To support the 2060 Net Zero Emission (NZE) target under the Paris Agreement, increasing the proportion of bioethanol blends to 20–30% has become a national priority. However, limited sugarcane-derived bioethanol production in Indonesia highlights the urgent need for alternative biomass sources. Pennisetum purpureum cv. Thailand (Pakchong grass) presents a promising candidate due to its high biomass yield, low lignin content, and adaptability. This study aims to optimize the bioethanol and silage production processes from Pakchong grass through pretreatment, enzymatic saccharification, and fermentation, utilizing a modified simultaneous saccharification and fermentation (SSF) scheme. Pretreatment optimization using NaOH (1–5%) revealed that 5% NaOH for 15 minutes effectively removed up to 70% lignin and 78% hemicellulose while retaining 66% cellulose. Enzymatic saccharification using 10 mg/mL cellulase for 5 days yielded 76.18% glucose conversion without requiring costly additives. Bioethanol fermentation was conducted using six fermentation schemes involving simultaneous (SSF), fed-batch (FSSF), and pre-saccharification strategies (PSFF). Among them, the two-feed FSSF (SE2) produced the highest ethanol yield (32 g/L, 95.41% efficiency), outperforming both conventional SSF (SE1) and PSFF variants. The findings emphasize the importance of synchronizing enzymatic hydrolysis with yeast metabolic activity. This work demonstrates the feasibility of integrated pretreatment and fermentation strategies for bioethanol production from Pakchong grass, offering insights for scalable and cost-effective renewable fuel development in tropical regions.

Fulltext
Keywords: Bioethanol; Fermentation; Pretreatment; Optimization; Pakchong grass

Article Metrics:

  1. Afedzi, A. E. K., & Parakulsuksatid, P. (2023). Recent advances in process modifications of simultaneous saccharification and fermentation (SSF) of lignocellulosic biomass for bioethanol production. Biocatalysis and Agricultural Biotechnology, 54, 102961. https://doi.org/10.1016/j.bcab.2023.102961
  2. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Conversion and Management, 52(2), 858–875. https://doi.org/10.1016/j.enconman.2010.08.013
  3. Battista, F., Gomez Almendros, M., Rousset, R., & Bouillon, P.-A. (2019). Enzymatic hydrolysis at high lignocellulosic content: Optimization of the mixing system geometry and of a fed-batch strategy to increase glucose concentration. Renewable Energy, 131, 152–158. https://doi.org/10.1016/j.renene.2018.07.038
  4. Bergamasco, S., Zikeli, F., Vinciguerra, V., Sobolev, A. P., Scarnati, L., Tofani, G., Scarascia Mugnozza, G., & Romagnoli, M. (2023). Extraction and Characterization of Acidolysis Lignin from Turkey Oak (Quercus cerris L.) and Eucalypt (Eucalyptus camaldulensis Dehnh.) Wood from Population Stands in Italy. Polymers, 15(17), 3591. https://doi.org/10.3390/polym15173591
  5. Boonchuay, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Srisupa, S., & Chaiyaso, T. (2021). Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Saccharomyces cerevisiae TC-5. Journal of Fungi, 7(7), 547. https://doi.org/10.3390/jof7070547
  6. Camesasca, L., Ramírez, M. B., Guigou, M., Ferrari, M. D., & Lareo, C. (2015). Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass and Bioenergy, 74, 193–201. https://doi.org/10.1016/j.biombioe.2015.01.017
  7. Chang, Y.-H., Chang, K.-S., Chen, C.-Y., Hsu, C.-L., Chang, T.-C., & Jang, H.-D. (2018). Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Fermentation, 4(2), 45. https://doi.org/10.3390/fermentation4020045
  8. Chanpla, M., Kullavanijaya, P., Janejadkarn, A., & Chavalparit, O. (2018). Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process. KSCE Journal of Civil Engineering, 22(1), 40–45. https://doi.org/10.1007/s12205-017-1164-y
  9. Cheng, S., Huang, A., Wang, S., & Zhang, Q. (2016). Effect of Different Heat Treatment Temperatures on the Chemical Composition and Structure of Chinese Fir Wood. BioResources, 11(2). https://doi.org/10.15376/biores.11.2.4006-4016
  10. da Silva, A. S., Espinheira, R. P., Teixeira, R. S. S., de Souza, M. F., Ferreira-Leitão, V., & Bon, E. P. S. (2020). Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnology for Biofuels, 13(1), 58. https://doi.org/10.1186/s13068-020-01697-w
  11. Datta, R. (1981). Acidogenic fermentation of lignocellulose–acid yield and conversion of components. Biotechnology and Bioengineering, 23(9), 2167–2170. https://doi.org/10.1002/bit.260230921
  12. Ernawati, A., Abdullah, L., Permana, I. G., & Karti, P. D. M. H. (2023). Morphological responses, biomass production and nutrient of Pennisetum purpureum cv. Pakchong under different planting patterns and harvesting ages. Biodiversitas Journal of Biological Diversity, 24(6). https://doi.org/10.13057/biodiv/d240640
  13. Faix, O. (1991). Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy. Holzforschung, 45(s1), 21–28. https://doi.org/10.1515/hfsg.1991.45.s1.21
  14. Fornazier, M., de Oliveira Rodrigues, P., Pasquini, D., & Alves Baffi, M. (2025). Effects of Alkaline Pretreatment with Sodium Hydroxide with and Without Anthraquinone on the Enzymatic Hydrolysis of Corncob and Corn Stover and Ethanol Production. Waste and Biomass Valorization, 16(5), 2535–2551. https://doi.org/10.1007/s12649-024-02811-x
  15. Hoyer, K., Galbe, M., & Zacchi, G. (2010). Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnology for Biofuels, 3(1), 14. https://doi.org/10.1186/1754-6834-3-14
  16. Hung, Y.-H. R., Chae, M., Sauvageau, D., & Bressler, D. C. (2023). Adapted feeding strategies in fed-batch fermentation improve sugar delivery and ethanol productivity. Bioengineered, 14(1). https://doi.org/10.1080/21655979.2023.2250950
  17. Hung, Y.-H. R., Sauvageau, D., & Bressler, D. C. (2025). An adaptive, continuous substrate feeding strategy based on evolved gas to improve fed-batch ethanol fermentation. Applied Microbiology and Biotechnology, 109(1), 64. https://doi.org/10.1007/s00253-025-13447-9
  18. IESR. (2024). Indonesia Energy Transition Outlook 2025: Navigating Indonesia’s Energy Transition at the Crossroads: A Pivotal Moment for Redefining the Future
  19. International Energy Agency. (2022). An Energy Sector Roadmap to Net Zero Emissions in Indonesia. In An Energy Sector Roadmap to Net Zero Emissions in Indonesia. https://doi.org/10.1787/4a9e9439-en
  20. Kacuráková, M., & Wilson, R. H. (2001). Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydrate Polymers, 44(4), 291–303. https://doi.org/10.1016/S0144-8617(00)00245-9
  21. Kongkeitkajorn, M. B., Yaemdeeka, R., Chaiyota, I., Hamsupo, K., Oraintara, A., & Reungsang, A. (2021). Bioethanol from Napier grass employing different fermentation strategies to evaluate a suitable operation for batch bioethanol production. Energy Conversion and Management: X, 12, 100143. https://doi.org/10.1016/j.ecmx.2021.100143
  22. Kottelat, J., Freeland, B., & Dabros, M. (2021). Novel Strategy for the Calorimetry-Based Control of Fed-Batch Cultivations of Saccharomyces cerevisiae. Processes, 9(4), 723. https://doi.org/10.3390/pr9040723
  23. Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnology for Biofuels, 2(1), 11. https://doi.org/10.1186/1754-6834-2-11
  24. Kumparan. (2023). Pertamax Green 95 Siap Dijual Pekan Depan, Tahap I di Jakarta & Surabaya. KumparanBISNIS
  25. Lara-Serrano, M., Morales-delaRosa, S., Campos-Martín, J. M., & Fierro, J. L. G. (2019). Fractionation of Lignocellulosic Biomass by Selective Precipitation from Ionic Liquid Dissolution. Applied Sciences, 9(9), 1862. https://doi.org/10.3390/app9091862
  26. Liu, Y., Xu, J., He, M., Liang, C., Yuan, Z., & Xie, J. (2016). Improved ethanol production based on high solids fed-batch simultaneous saccharification and fermentation with alkali-pretreated sugarcane bagasse. BioRes, 11(1), 2548–2556
  27. Loedkunchotipat, K., Desclaux, S., & Maksup, S. (2015). Expression analysis of cellulose synthase and phenylalanine ammonia-lyase genes in Napier grass hybrids (Pennisetum hybrid). Thai Journal of Genetics, 8, 167–174
  28. Lounglawan, P., Lounglawan, W., & Suksombat, W. (2014). Effect of Cutting Interval and Cutting Height on Yield and Chemical Composition of King Napier Grass (Pennisetum Purpureum x Pennisetum Americanum). APCBEE Procedia, 8, 27–31. https://doi.org/10.1016/j.apcbee.2014.01.075
  29. Lun, L. W., Gunny, A. A. N., Kasim, F. H., & Arbain, D. (2017). Fourier transform infrared spectroscopy (FTIR) analysis of paddy straw pulp treated using deep eutectic solvent. 020049. https://doi.org/10.1063/1.4981871
  30. Manokhoon, P., & Rangseesuriyachai, T. (2020). Effect of two-stage sodium hydroxide pretreatment on the composition and structure of Napier grass (Pakchong 1) ( Pennisetum purpureum ). International Journal of Green Energy, 17(13), 864–871. https://doi.org/10.1080/15435075.2020.1809425
  31. Meraj, A., Jawaid, M., Singh, S. P., Nasef, M. M., Ariffin, H., Fouad, H., & Abu‐Jdayil, B. (2024). Isolation and characterisation of lignin using natural deep eutectic solvents pretreated kenaf fibre biomass. Scientific Reports, 14(1), 8672. https://doi.org/10.1038/s41598-024-59200-6
  32. Minmunin, J., Limpitipanich, P., & Promwungkwa, A. (2015). Delignification of Elephant Grass for Production of Cellulosic Intermediate. Energy Procedia, 79, 220–225. https://doi.org/10.1016/j.egypro.2015.11.468
  33. Mugabe, W., Yuan, X., Li, J., Dong, Z., & Shao, T. (2019). Effects of hexanoic acid, Lactobacillus plantarum and their combination on the fermentation characteristics of Napier grass. Animal Feed Science and Technology, 253, 135–140. https://doi.org/10.1016/j.anifeedsci.2019.05.005
  34. Olofsson, K., Bertilsson, M., & Lidén, G. (2008). A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnology for Biofuels, 1(1), 7. https://doi.org/10.1186/1754-6834-1-7
  35. Panakkal, E. J., Cheenkachorn, K., Chuetor, S., Tantayotai, P., Raina, N., Cheng, Y.-S., & Sriariyanun, M. (2022). Optimization of deep eutectic solvent pretreatment for bioethanol production from Napier grass. Sustainable Energy Technologies and Assessments, 54, 102856. https://doi.org/10.1016/j.seta.2022.102856
  36. Pandey, K. K., & Pitman, A. J. (2003). FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 52(3), 151–160. https://doi.org/10.1016/S0964-8305(03)00052-0
  37. Pendse, D. S., Deshmukh, M., & Pande, A. (2023). Different pre-treatments and kinetic models for bioethanol production from lignocellulosic biomass: A review. Heliyon, 9(6), e16604. https://doi.org/10.1016/j.heliyon.2023.e16604
  38. Pensri, B., Aggarangsi, P., Chaiyaso, T., & Chandet, N. (2016). Potential of Fermentable Sugar Production from Napier cv. Pakchong 1 Grass Residue as a Substrate to Produce Bioethanol. Energy Procedia, 89, 428–436. https://doi.org/10.1016/j.egypro.2016.06.287
  39. Peraturan Presiden Nomor 40 Tahun 2023 Tentang Percepatan Swasembada Gula Nasional Dan Penyediaan Bioetanol Sebagai Bahan Bakar Nabati (Biofuel) (2023)
  40. Percival Zhang, Y.-H., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, 24(5), 452–481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  41. Phitsuwan, P., Sakka, K., & Ratanakhanokchai, K. (2016). Structural changes and enzymatic response of Napier grass (Pennisetum purpureum) stem induced by alkaline pretreatment. Bioresource Technology, 218, 247–256. https://doi.org/10.1016/j.biortech.2016.06.089
  42. Podkaminer, K. K., Kenealy, W. R., Herring, C. D., Hogsett, D. A., & Lynd, L. R. (2012). Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF). Biotechnology for Biofuels, 5(1), 43. https://doi.org/10.1186/1754-6834-5-43
  43. Rahardjo, A. H., Azmi, R. M., Muharja, M., Aparamarta, H. W., & Widjaja, A. (2021). Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review. IOP Conference Series: Materials Science and Engineering, 1053(1), 012097. https://doi.org/10.1088/1757-899X/1053/1/012097
  44. Raspolli Galletti, A. M., D’Alessio, A., Licursi, D., Antonetti, C., Valentini, G., Galia, A., & Nassi o Di Nasso, N. (2015). Midinfrared FT-IR as a Tool for Monitoring Herbaceous Biomass Composition and Its Conversion to Furfural. Journal of Spectroscopy, 2015, 1–12. https://doi.org/10.1155/2015/719042
  45. Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Sripichitt, P., Punsuvon, V., Vaithanomsat, P., Nakamanee, G., & Tudsri, S. (2013). Biomass Yield, Chemical Composition and Potential Ethanol Yields of 8 Cultivars of Napiergrass (<i>Pennisetum purpureum</i> Schumach.) Harvested 3-Monthly in Central Thailand. Journal of Sustainable Bioenergy Systems, 03(02), 107–112. https://doi.org/10.4236/jsbs.2013.32015
  46. Schwanninger, M., Rodrigues, J. C., Pereira, H., & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23–40. https://doi.org/10.1016/j.vibspec.2004.02.003
  47. Shadbahr, J., Khan, F., & Zhang, Y. (2017). Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol. Energy Conversion and Management, 141, 236–243. https://doi.org/10.1016/j.enconman.2016.08.025
  48. Sun, R. C., Tomkinson, J., Ma, P. L., & Liang, S. F. (2000). Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments. Carbohydrate Polymers, 42(2), 111–122. https://doi.org/10.1016/S0144-8617(99)00136-8
  49. Tarasov, D., Leitch, M., & Fatehi, P. (2018). Lignin–carbohydrate complexes: properties, applications, analyses, and methods of extraction: a review. Biotechnology for Biofuels, 11(1), 269. https://doi.org/10.1186/s13068-018-1262-1
  50. Wang, Z., Lv, Z., Yang, X., & Tian, S. (2013). Fed-batch mode optimization of SSF for cellulosic ethanol production from steam-exploded corn stover. BioRes, 8(4), 5773–5782
  51. Xiao, Z., Zhao, Y., Wang, Y., Tan, X., Wang, L., Mao, J., Zhang, S., Lu, Q., Hu, F., Zuo, S., Liu, J., & Shan, Y. (2025). Sucrose-driven carbon redox rebalancing eliminates the Crabtree effect and boosts energy metabolism in yeast. Nature Communications, 16(1), 5211. https://doi.org/10.1038/s41467-025-60578-8
  52. Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41(7), 806–819. https://doi.org/10.1016/j.compositesa.2010.03.005
  53. Yasuda, M., Nagai, H., Takeo, K., Ishii, Y., & Ohta, K. (2014). Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach). SpringerPlus, 3(1), 333. https://doi.org/10.1186/2193-1801-3-333
  54. Zhuang, J., Li, M., Pu, Y., Ragauskas, A., & Yoo, C. (2020). Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Applied Sciences, 10(12), 4345. https://doi.org/10.3390/app10124345

Last update:

No citation recorded.

Last update: 2025-11-12 18:22:31

No citation recorded.