skip to main content

Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells

1Département de Physique, Laboratoire sur l’Energie Solaire-Université de Lomé, Togo

2Département de Physique, Laboratoire Matériaux, Energies Renouvelables et Environnement (LaMERE), Togo

3Département de Physique, Laboratoire de Physique des Matériaux et des Composants à Semi-conducteurs, Université de Lomé, Togo

Received: 18 Jul 2019; Revised: 16 Dec 2019; Accepted: 28 Dec 2019; Available online: 15 Feb 2020; Published: 18 Feb 2020.
Editor(s): H Hadiyanto

Citation Format:
Abstract

This work was focused on carbonizing four tropical fruits shells wastes such as: coconut shells (CS), palmyra shells (PS), doum palm shells (DPS), whole fruit of doum palm (WFDP) and teak wood (TW) used as control. The aim was to investigate the potential of those biochar to be used as an alternative energy source in replacement ofcharcoal. The raw biomasses samples were carbonized under the same conditions and some combustion characteristics of the obtained biochar such as lower calorific value, energy per unit volume associated to bulk density, ash content, moisture content and ash mineral content were investigated. The temperature in the furnace was estimated during carbonization process using a K-type thermocouple. The thermal profile of the studied raw biomasses reveals three phases of carbonization. The biochar yield drops significantly for all biomasses as the final maximum temperature increases. The average yields obtained ranged from 37.81 % for palmyra shells to 27.57 % for the doum palm shells. The highest yield achieved was 42.32 % obtained at 280 °C for palmyra shells, the lowest yield (24.42 %) was recorded at the highest maximum temperature of 590 ° C for doum palm shells. The results of energy parameters of the studied biochar showed that coconut shells charcoal presented the highest lower calorific value (28.059 MJ.kg-1), followed by doum palm shells (26.929 MJ.kg-1) when, with 25.864 MJ.kg-1, whole fruit of doum palm charcoal showed the lowest lower calorific value. Similarly, with the highest bulk density of 0.625 g/cm3 coconut shells charcoal presented the highest energy per unit volume (17536.88 J/cm3), whereas with the lowest bulk density of 0.415 g/cm3, whole fruit of doum palm charcoal presented the lowest energy per unit volume. The ash content analysis showed that whole fruit of doum palm had the highest ash content (18.75 %) and palmyra nut shells charcoal (8.42 %).Teak wood charcoal, took as control, has the highest lower calorific value (32.163 MJ.kg-1), less dense as coconut shell (0.43 g/cm3), his energy per unit of volume is 13830.09 j/cm3 but the lowest value of as content (2.90 %). Among these biomasses charcoals, only whole fruit of doum palm charcoal ash showed a high chloride and sulfide content respectively  9.73 % and 1.75 % in weight. From these results, the produced charcoals could be used as alternative fuels except for whole fruits of doum palm charcoal which chloride and sulfide content were found high. ©2020. CBIORE-IJRED. All rights reserved

Fulltext View|Download
Keywords: Biochar; Charcoal; Wood; Carbonization; Alternative Fuels; Lower calorific value; Energy per unit volume

Article Metrics:

  1. Abdu, Z. & Sadiq, A. G. (2014) Production and Characterization of Briquette Charcoal by Carbonization of Agro-Waste. Energy and Power, 4 (2), 41-47
  2. Abdullah, S.S. & Yusup, S. (2010) Method for Screening of Malaysian Biomass Based on Aggregated Matrix for Hydrogen Production through Gasification. J. App. Sci. 10 (24), 3301-3306
  3. Agrafioti, E. Bouras, G. Kalderis D. & Diamadopoulos E. (2013) Biochar production by sewage sludge pyrolysis, Journal of Analytical and Applied Pyrolysis, 101, 72-78
  4. Akintaroa, A.O., Musa, A.I., Ajobo, J.A. & Oyewusi, T.F. (2017) The Potentials of Using Carbonized Corncob to Produced Briquettes as an Alternative to Fuelwood. FUTA Journal of Research in Sciences, 13, 137-145
  5. Ananias, F. D. J. Lucas, P. P. Saly, T. Artur, Q. L. & José, O. B. A. M. de Andrade (2016) Higroscopicity of charcoal produced in different temperatures. CERNE, 22 (4), 423-430
  6. Christian, R. L. Hassan, M. R. Daniel, J. S. & Christian, Z. (2016) Char fuel production in developing countries-A review of urban biowaste carbonization. Renewable and Sustainable Energy Renews 59, 1514-1530
  7. Coulibaly, B.& Jocelyn, L. (2006) Expérimentation de production de charbon de bois commercial à partir des produits d’éclairies des plantations de teck dans la forêt de TENE. Séminaire FORAFRI de Libreville-session 3 : produit de forêt
  8. Damgou, M. K. Pali, K. Komi, S. & Kossi N. (2018) Evaluation of Some Combustion Characteristics of Biochar produced from Coconut Husks, Corn Cobs and Palm Kernel Shells, International Journal of Innovation and Applied Studies, 24 (3), 1124-1130
  9. Damgou, M. K. Pali, K. Mazabalo B. & Kossi N. (2018) Calorific value enhancement due to combination of biochars from corn cobs, tender coconut husks and palm ker-nel shells. Int. J. Adv. Res., 6(11), 234-238
  10. Davies, R.M. & Davies, O. A. (2013) Physical and Combustion Characteristics of Briquettes Made from Water Hyacinth and Phytoplankton Scum as Binder. Journal of Combustion, https://doi.org/10.1155/2013/549894
  11. Demirbas, A. (2008) Biodiesel : A Realistic Fuel Alternative for Diesel Engines. Springer, London, 21-22
  12. Demirbas, A. (2004) Effect of temperature and particle size on biochar yield from pyrolysis of agricultural residues. Journal Analytical and Applied Pyrolysis 721, 243–248
  13. Demirel, Y. (2012) Energy, energy types, in Green Energy, Technology. Springer-Verlag, London
  14. Duruaku, J. I. Ajiwe, V.I.E. Okoye, N.H. & Arinze, R.U. (2016) An Evaluation of the Calorific Values of the branches and Stems of 11 Tropical Trees. Journal of Sustainable Bioenergy Systems, 6, 44-54
  15. Eric, S. N. Joel, B. Patrick, R. Jeremy, V. & Laurent, V. D. S. (2014) Optimisation de la réactivité des charbons végétaux pour la réduction du minerai de fer en haut fourneau, Congrès international sur les matériaux et l’énergie cimaten, Sousse, Tunisie, 14-16
  16. Évaluation rapide et analyse des Gaps; énergie durable pour tous, Energy For All, Jui. 2012. https://www.se4all-africa.org/fileadmin/uploads/se4all/Documents/Country_RAGAs/TOGO_RAGA_FR_Released.pdf, Access on 13 July 2019
  17. Felix, M. & Gheewala, S. H. A. (2011) Review of biomass energy dependency in Tanzania. Proceeding sof the 9th eco-energy and materials science and engineering symposium. Energy Procedia, 9, 338–343
  18. Hanisom, A. Kun, A. M. & Hongwei, W. (2010) Biochar as fuel : 2. Significant Differences in Fuel Quality and Ash Properties of Biochars from Various Biomass Components of Mallee Trees. Energy Fuels, 24, 1972-1979
  19. Hiroki, H. Hirroomi & Yusrizal, M. I. (2013) Wood Pyrolysis in Pre-Vacuum Chamber. Journal of Sustainable Bioenergy Systems, 3, 243-249
  20. Hussein, K N, Sarah, E. H., Gerard, C. & Robert, T. B. (2015) Sustainable Technologies for Small-Scale Biochar Production-A Review. Journal of Sustainable Bioenergy Systems, 5, 10-31
  21. Jean-Philippe, T. & Pascale, N. (2012) Caractérisation et traitement thermochimique des coques d’anacarde en vue de leur valorisation énergétique dans les procédés de transformation artisanale de noix de cajou. Déchets sciences et techniques - revue francophone d’écologie industrielle, 62, 28-35
  22. Junna, S. Fuhong, H., Yinghua, P. & Zhenhua, Z. (2017) Effects of pyrolysis temperature and residence time on physicochemical properties of different biochar types, Acta agriculturae scandinavica, section B-soil & Plant science, 67 (1), http://dx.doi.org/10.1080/09064710.2016.1214745, 12–22
  23. Koffi, S. (2001) Rapport d’étude sur les données du bois-énergie au Togo, http://www.fao.org/3/a-x6801f.pdf., Access on 13 July 2019
  24. Kouassi, S. G. Grah, P. A. Bini, K. D. Patrick, D. Didier, R. Drissa, O. K. Séraphin, K. Ghislaine, G. M. D. B. & Albert, T. (2016) Contribution à l’étude de quatre charbons activés à partir des coques de noix de coco. Afrique science, 5 (12), 229-245
  25. Kuihua, H. Qian, W. Jianli, Z. Luo, K. H. Hui, L. Yang, C. & Chunmei, L. (2016) Combustion pattern, characteristics, and kinetics of biomass and chars from segmented heating carbonization : Combustion Patterns and kinetics. Asia-Pac. J. Chem. Eng., 11, 812-822
  26. Lena, D. M. Kenneth, L. B. & Francis, K. (2017) Experimental analysis of three common tree species in Ghana. International Journal of Engineering Sciences & Research Technology, 6 (6), 133-141
  27. Mitchual, S. J. Frimpong-Mensah, K. & Darkwa, N. A. (2014) Evaluation of Fuel Properties of Six Tropical Hard-wood Timber Species for Briquettes. Journal of Sustainable Bioenergy Systems, 4, 1-9
  28. Pali, K. Damgou, M. K. Saboilliè, K. Essowè, M. & Kossi, N. (2019) Energy Efficiency of Briquettes Derived from Three Agricultural Waste’s Charcoal Using Two Organic Binders. Journal of Sustainable Bioenergy Systems, 9, 79-89. https://doi.org/10.4236/jsbs.2019.92006
  29. Patrick, D. E. M. (2007) Etude de faisabilité d'une unité de production de charbon vert, Projet de fin d’études en vue de l’obtention du diplôme de l’ingénieur de conception, Page 4
  30. Yerizam, M. Marsi, M. & Novia, N. (2013). Characteristics of Composite Rice Straw and Coconut Shell as Biomass Energy Resources (Briquette). International Journal on Advanced Science, Engineering and Information Technology , 3 (3), 42-48

Last update:

  1. Impact of climate change on the distribution of Bombax costatum Pellegr. & Vuillet in Mali, West Africa

    Aly Coulibaly, Hospice Gérard Gracias Avakoudjo, Rodrigue Idohou, Eric José Vodounnon, Souleymane Diallo, Mamadou Cherif. Trees, Forests and People, 11 , 2023. doi: 10.1016/j.tfp.2022.100359
  2. Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove

    Somchet Chaiyalap, Ritthikrai Chai-ngam, Juthaporn Saengprajak, Jenjira Piamdee, Apipong Putkham, Arnusorn Saengprajak. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.56575
  3. Effect of different pre-treatments and addition of plastic on the properties of bio-oil obtained by pyrolysis of greenhouse crop residue

    I. Iáñez-Rodríguez, M.A. Martín-Lara, G. Blázquez, M. Calero. Journal of Analytical and Applied Pyrolysis, 153 , 2021. doi: 10.1016/j.jaap.2020.104977
  4. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review

    Ziyun Liu, Zihan Wang, Hongxu Chen, Tong Cai, Zhidan Liu. Environmental Pollution, 268 , 2021. doi: 10.1016/j.envpol.2020.115910
  5. Biological Rotation Age of Community Teak (Tectona grandis) Plantation Based on the Volume, Biomass, and Price Growth Curve Determined through the Analysis of Its Tree Ring Digitization

    Effendi Tri Bahtiar, Nam-Hun Kim, Apri Heri Iswanto. Forests, 14 (10), 2023. doi: 10.3390/f14101944
  6. Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass

    Mian Hu, Zhiheng Ye, Qi Zhang, Qiping Xue, Zhibin Li, Junliang Wang, Zhiyan Pan. Energy, 245 , 2022. doi: 10.1016/j.energy.2022.123286
  7. First report on toddy palm shell-based vermicompost by Eisenia fetida

    K. Velmurugan, V. Annamalai. International Journal of Environmental Science and Technology, 20 (10), 2023. doi: 10.1007/s13762-022-04597-8
  8. Efficient mercury sequestration from wastewaters using palm kernel and coconut shell derived biochars

    Samiratu Atibun Isa, Muhammad Aamir Hafeez, Bhupendra Kumar Singh, Sae Yun Kwon, Sungwook Choung, Wooyong Um. Environmental Advances, 8 , 2022. doi: 10.1016/j.envadv.2022.100196

Last update: 2024-10-12 02:55:19

  1. Effect of different pre-treatments and addition of plastic on the properties of bio-oil obtained by pyrolysis of greenhouse crop residue

    I. Iáñez-Rodríguez, M.A. Martín-Lara, G. Blázquez, M. Calero. Journal of Analytical and Applied Pyrolysis, 153 , 2021. doi: 10.1016/j.jaap.2020.104977
  2. Hydrochar and pyrochar for sorption of pollutants in wastewater and exhaust gas: A critical review

    Ziyun Liu, Zihan Wang, Hongxu Chen, Tong Cai, Zhidan Liu. Environmental Pollution, 268 , 2021. doi: 10.1016/j.envpol.2020.115910