skip to main content

Biofixation of Carbon dioxide by Chlamydomonas sp. in a Tubular Photobioreactor

Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

Published: 15 Feb 2012.
Editor(s): H. Hadiyanto

Citation Format:
Abstract
The biogas production from anaerobic digestion is a potential fuel for power generators application, if biogas can be upgraded to the same standards as fossil natural gas by CO2, H2S, and other non-combustible component removal. Microalgae Chlamydomonas sp. has potency to biofix the carbon dioxide and can be used as an additional food ingredient. The variations of flow rate and carbon dioxide concentration in the process resulting different value of biomass production and carbon dioxide biofixation. Biomass production at 40% carbon dioxide concentration obtained 5.685 gr/dm3 at 10% carbon dioxide concentration obtained 4.892 gr/dm3. The greatest value of carbon dioxide absorption occurs at a 40% concentration amounting to 12.09%. The rate of growth and productivity of microalgae tend to rise in 10% and 20% (%v) carbon dioxide concentration, but began started a constant at 30% and 40% (%v) carbon dioxide concentration. Biomass production tends to increase in light conditions while a constant in dark conditions. This study used Chlamydomonas sp. as media culture and performed on bubble column and tubular reactor with 6 litres of culture medium at a temperature of 28oC and atmospheric pressure.
Fulltext View|Download

Article Metrics:

  1. Balat M, Balat H (2009) Biogas as a Renewable Energy Source - A Review. Energy Sour Part A Recovery Util Environ Eff 31: 1280-1293. https://doi.org/10.1080/15567030802089565
  2. Abatzoglou N, Boivin S (2009) A Review of Biogas Purification Processes. Biofuels Bioprod Biorefining 3: 42-71. https://doi.org/10.1002/bbb.117
  3. Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas Scrubbing, Compression and Storage: Perspective and Prospectus in Indian Context. Renew Energy 30: 1195-1202. https://doi.org/10.1016/j.renene.2004.09.012
  4. Ajhar M., Travesset M, Yuce S, Melin T (2010) Siloxane Removal from Landfill and Digester Gas - A Technology Overview. Bioresour Technol 101: 2913-2923. https://doi.org/10.1016/j.biortech.2009.12.018
  5. Cho KS, Ryu HW, Lee NY (2000) Biological Deodorization of Hydrogen Sulphide using Porous Lava as a Carrier of Thiobacillus thiooxidans. J Biosci Bioeng 90: 25-31. https://doi.org/10.1016/S1389-1723(00)80029-8
  6. Chung YC, Ho KL, Tseng CP (2003) Hydrogen Sulphide Gas Treatment by a Chemical-Biological Process: Chemical Absorption and Biological Oxidation Steps. J Environ Sci Health Part B-Pestic Contam Agric Wastes 38: 663-679. https://doi.org/10.1081/PFC-120023522
  7. Chung YC, Ho KL, Tseng CP (2006) Treatment of high H2S Concentrations by Chemical Absorption and Biological Oxidation Process. Environ Eng Sci 26: 942-53. https://doi.org/10.1089/ees.2006.23.942
  8. Porpatham E, Ramesh A, Nagalingam B (2007) Effect of Hydrogen Addition on The Performance of a Biogas Fuelled Spark Ignition Engine. Int J Hydrogen Energy 32: 2057-2065. https://doi.org/10.1016/j.ijhydene.2006.09.001
  9. Favre E, Bounaceur R, Roizard D (2009) Biogas, Membranes and Carbon Dioxide Capture. J Membr Sci 238: 11-4. https://doi.org/10.1016/j.memsci.2008.12.017
  10. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The Future of Anaerobic Digestion and Biogas Utilization. Bioresour Technol 100: 5478-5484. https://doi.org/10.1016/j.biortech.2008.12.046
  11. Ho SH, Chen CY, Lee DJ, Chang, JS (2011) Perspectives on Microalgal CO2 Emission Mitigation System - A Review. Biotechnol Adv 29: 189-198. https://doi.org/10.1016/j.biotechadv.2010.11.001
  12. Wang B, Li Y, Wu N, Lan CQ (2008) CO2 Bio-Mitigation using Microalgae. Appl Microbiol Biotechnol 79: 707-718. https://doi.org/10.1007/s00253-008-1518-y
  13. Demirbas A (2011) Biodiesel from Oligae, Biofixation of Carbon Dioxide by Microalgae: A Solution to Pollution Problems. Appl Energy 88: 3541-3547. https://doi.org/10.1016/j.apenergy.2010.12.050
  14. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of Microalgae for Lipid Production under High Levels Carbon Dioxide. Bioresour Technol 101: 571-574. https://doi.org/10.1016/j.biortech.2009.03.030
  15. Brune DE, Lundquist TJ, Benemann JR (2009) Microalgal Biomass for Greenhouse Gas Reductions: Potential for Replacement of Fossil Fuels and Animal Feeds. J Environ Eng-ASCE 135: 1136-1144. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000100
  16. Li FF, Yang ZH, Zeng R, Yang G, Chang X, Yan JB (2011) Microalgae Capture of CO2 from Actual Flue Gas Discharged from A Combustion Chamber. Ind Eng Chem Res 50: 6496-6502. https://doi.org/10.1021/ie200040q
  17. Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD (2011) Microalgal Biomass Production and On-Site Bioremediation of Carbon Dioxide, Nitrogen Oxide and Sulfur Dioxide from Flue Gas using Chlorella sp. Cultures. Bioresour Technol, 102: 9135-9142. https://doi.org/10.1016/j.biortech.2011.06.091
  18. Mata TM, Matins AA, Caetano NS (2010) Microalgae for Biodiesel Production and Other Applications: A Review. Renew Sust Energy Rev 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  19. Chisti Y (2007) Biodiesel from Microalgae. Biotechnol Adv 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  20. Li Y, Horsman M, Wu N, Lan QC, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Progr 24: 815-820. https://doi.org/10.1021/bp070371k
  21. Brennan L, Owende P (2010) Biofuels from Microagale - A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-Products. Renew Sust Energ Rev, 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  22. Lee JY, Yoo C, Jun SY, Ahn, CY, Oh HM (2010) Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresour Technol 101: 575-577. https://doi.org/10.1016/j.biortech.2009.03.058
  23. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, Photobioreactor Design and Harvesting of Microalgae for Biodiesel Production: A Critical Review. Bioresour Technol 102: 71-81. https://doi.org/10.1016/j.biortech.2010.06.159

Last update:

  1. Cultivation of marine microalgae, Nannochloropsis sp. in macro-bubbles photobioreactor system

    Nur Fakhira Mohd Asri, Muhammad Amirul Abdul Razak, Nurashikin Ihsan, M. Farizal Kamaroddin. INTERNATIONAL CONFERENCE ON BIOENGINEERING AND TECHNOLOGY (IConBET2021), 2454 , 2022. doi: 10.1063/5.0078260
  2. Cultivation ofscenedesmussp. using optimized minimal nutrients and flocculants – a potential platform for mass cultivation

    E. M. Nithiya, F. Fenila, K. K. Vasumathi, M. Premalatha. Environmental Technology, 41 (10), 2020. doi: 10.1080/09593330.2018.1531939
  3. Biorefinery Approach for Biodiesel Production from Microalgae

    J P Punyanan. IOP Conference Series: Earth and Environmental Science, 520 (1), 2020. doi: 10.1088/1755-1315/520/1/012008
  4. Interactions between polyethylene and polypropylene microplastics and Spirulina sp. microalgae in aquatic systems

    H. Hadiyanto, Adian Khoironi, Inggar Dianratri, Suherman Suherman, Fuad Muhammad, Seetharaman Vaidyanathan. Heliyon, 7 (8), 2021. doi: 10.1016/j.heliyon.2021.e07676
  5. CO2 flue gas capture for cultivation of Spirulina platensis in paper mill effluent medium

    Yusup Setiawan, Prima Besty Asthary, Saepulloh. INTERNATIONAL CONFERENCE ON BIOLOGY AND APPLIED SCIENCE (ICOBAS), 2120 , 2019. doi: 10.1063/1.5115643
  6. Microalgae Biofilm and Bacteria Symbiosis in Nutrient Removal and Carbon Fixation from Wastewater: a Review

    Xiaoyan Wang, Yu Hong. Current Pollution Reports, 8 (2), 2022. doi: 10.1007/s40726-022-00214-x
  7. Cultivation of scenedesmus sp. using optimized minimal nutrients and flocculants – a potential platform for mass cultivation

    E. M. Nithiya, F. Fenila, K. K. Vasumathi, M. Premalatha. Environmental Technology, 41 (10), 2020. doi: 10.1080/09593330.2018.1531939

Last update: 2024-10-10 12:49:57

  1. Biorefinery Approach for Biodiesel Production from Microalgae

    J P Punyanan. IOP Conference Series: Earth and Environmental Science, 520 (1), 2020. doi: 10.1088/1755-1315/520/1/012008
  2. CO2 flue gas capture for cultivation of Spirulina platensis in paper mill effluent medium

    Setiawan Y.. AIP Conference Proceedings, 127 , 2019. doi: 10.1063/1.5115643
  3. Cultivation of scenedesmus sp. using optimized minimal nutrients and flocculants–a potential platform for mass cultivation

    Nithiya E.M.. Environmental Technology (United Kingdom), 41 (10), 2020. doi: 10.1080/09593330.2018.1531939
  4. The social aspects and public acceptance of biomass giving the example of a Hungarian region

    Bujdosó Z.. International Journal of Renewable Energy Development, 1 (2), 2012. doi: 10.14710/ijred.1.2.39-43