skip to main content

Assessing the potential tsunami source of the Manila trench at the Bengkayang nuclear power plant site in Kalimantan using topographical details

1Meteorological, Climatological, and Geophysical Agency, Indonesia

2Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Indonesia

3Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Indonesia

4 Indonesian Nuclear Technology Polytechnic, National Research and Innovation Agency, Indonesia

View all affiliations
Received: 10 Sep 2023; Revised: 8 Nov 2023; Accepted: 6 Dec 2023; Available online: 29 Dec 2023; Published: 1 Jan 2024.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Tsunamis pose a significant threat to the construction of Nuclear Power Plants. Therefore, it is necessary to carry out a comprehensive study regarding the potential threat of tsunamis and mitigation measures using detailed data at prospective locations. This assessment is a prerequisite for effective environmental impact planning and analysis. To determine the suitability of a prospective location, careful consideration of natural factors, including earthquakes as triggers for tsunamis, is essential. The main objective of this tsunami research is to assess the level of safety of potential locations against tsunami hazards and develop appropriate mitigation strategies. This research uses the Cornell Multigrid Coupled Tsunami (COMCOT) tsunami modeling technique. This modeling approach utilizes topographic and bathymetric data obtained through extensive field surveys. In addition, this research aims to determine the maximum tsunami height in the inundation area and identify potential tsunami hazards arising from various scenarios related to the active tectonic potential of the Philippine Manila Trench. The Bengkayang Gosong Beach area and West Kalimantan are among the candidate locations that may be affected with the estimated tsunami height being between 0.48 meters and 0.62 meters. The tsunami arrival time was between 9 hours 10 minutes to 9 hours 24 minutes. These findings play an important role in conducting comprehensive risk assessments for nuclear power plant development, ensuring that necessary steps are taken to reduce potential hazards associated with tsunamis.
Fulltext View|Download
Keywords: nuclear power plants; tsunami; modeling; COMCOT; Manila Trench
Funding: BRIN under contract B-802/II.7.5/FR/6/2022 under contract B-9106/III.3/KS.0.0/9/2022

Article Metrics:

  1. Alimah, S., Alhakim, E.E., Sunarko, Anzhar, K., Mudjiono (2021), Demographic Characteristics of Site Vicinity Area for Preparation in West Kalimantan NPP Site, MIPI, 15(2), 130-135,
  2. BAPETEN (2018), Peraturan Badan Pengawas Tenaga Nuklir Nomor 4 Tahun 2018 tentang Ketentuan Keselamatan Evaluasi Tapak Instalasi Nuklir. Indonesia,
  3. BAPETEN (2014), Peraturan Kepala Badan Pengawas Tenaga Nuklir Nomor 6 Tahun 2014 tentang Evaluasi Tapak Instalasi Nuklir Untuk Aspek Meteorologi dan Hidrologi,
  4. Blaser, L., Kruger, F., Ohrnberger, M., Scherbaum, F., 2010. Scaling relations of earthquake source parameters estimates with special focus on subduction environment, Bulletin of the Seismological Society of America, 100, 2914–2926,
  5. Bock, Y., Prawirodirdjo, L., Genrich, J. F., Stevens, C. W., McCaffrey, R., Subarya, C., Puntodewo, S. S. O., Calais, E, (2003), Crustal motion in Indonesia from Global Positioning System measurements, J. Geophys. Res., 108, 2367.
  6. Costas, S., Utku, K. (2015), The fukushima accident was preventable, Philosophical Transactions of the Royal Society, A 373 (2053), 20140379, 1–23,
  7. Dao, M.H., Tkalich, P. (2007) Tsunami propagation modeling - a sensitivity study. Natural Hazards and Earth System Science, 7(6), 741–754,
  8. Diposantono, S., and Budiman. (2006), Tsunami, Buku Ilmiah Populer, Bogor
  9. Federal Emergency Management Agency (FEMA) (2012), Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, FEMA P-646/April 2012
  10. Global Historical Tsunami Database, National Oceanic and Atmospheric Administration (NOAA) (, https://doi: 10.7289/V5PN93H7
  11. Griffin, J., Latief, H., Kongko, W., Harig, S., Horspool, N., Hanung, R., Rojali, A., Maher, N., Fuchs, A., Hossen, J., Upi, S., Dewanto, S.E., Rakowsky, N. and Cummins, P. (2015), An evaluation of onshore digital elevation models for modeling tsunami inundation zones. Front. Earth Sci. 3, 32,
  12. Hakim, F.S.N., and Setijadi, R. (2021), Karakteristik Batuan Mesozoikum di Daerah Bengkayang: Berdasarkan Kandungan Unsur Anorganik, Jurnal Geologi dan Sumberdaya Mineral, 22(1).
  13. IAEA (2020), Advanced Large Water Cooled Reactors, A Supplement to: IAEA Advanced Reactors Information System (ARIS), International Atomic Energy Agency (IAEA),
  14. Kajiura, K., & Shuto, N. (1990). Tsunami in the sea, Edited by B. Le Mehaute and D.M. Hanes number 9 part B. 395-420. John Wiley and Sons, Inc
  15. Kongko, W. (2012), South Java tsunami model using highly resolved data and probable tsunamigenic sources. Hannover : Gottfried Wilhelm Leibniz Universität, Dissertation, 347 S,
  16. Latief, H., Hadi, S., Sunendar, H., Gusman, A.R., (2003), Tsunamis Assement Around The Sunda Strait, International Seminar/Workshop on Tsunami “In Memoriam 120 years of Krakatau Eruption –Tsunami and Lesson Learned from Large Tsunami”, Jakarta
  17. Latief, H. (2013), Pedoman Teknik Peta Rawan Bahaya Tsunami, Badan Nasional Penanggulangan Bencana,
  18. Lipscy, P.Y., Kushida, K.E., Incerti, T. (2013), The Fukushima disaster and Japan's nuclear plant vulnerability in comparative perspective, Environ Sci Technol, 47(12), 6082-8.
  19. Liu, Y. G, Steg, A, Smits, B, Tamminga, S, (1994), Crambe meal: removal of glucosinolates by heating with additives and water extraction. Anim. Feed Sci. Technol., 48 (3-4), 273-287,
  20. Mansinha, L. & Smiley, D.E., 1971. The displacement field of inclined faults, B. seism. Soc. Am., 61, 1433–1440,
  21. Matsutomi, H., Okamoto, K., Harada, K. (2010), Inundation flow velocity of tsunami on land and its practical use, Coastal Engineering Proceedings,
  22. Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T., Lin, Y., Tan, S. K., and Pan, T. (2009), Tsunami hazard from the subduction megathrust of the South China Sea: Part I. Source characterization and the resulting tsunami, Journal of Asian Earth Sciences, 36, 13-20,
  23. Mudjiono, Alimah, S., Susiati, H., (2020), Identifikasi Perubahan Tataguna Lahan di Sekitar Calon Tapak PLTN Kabupaten Bengkayang, Kalimantan Barat, Jurnal Pengembangan Energi Nuklir 22(2),
  24. Nugroho, A., Kusratmoko, E., and Indra, T.L. (2021), Preferred Site Selection Using GIS and AHP: Case Study in Bangka Island NPP Site, Jurnal Pengembangan Energi Nuklir, 23(1), 51-60,
  25. Omoto, A. (2015), Where was the weakness in application of defense-in-depth concept and why? Reflections on the Fukushima Daiichi Nuclear Accident, towards Social-Scientific Literacy and Engineering Resilience, Springer Open, Springer Cham Heidelberg, Germany, Ch. P131-164,
  26. PP (2014), Peraturan Pemerintah Nomor 79 Tahun 2014 tentang Kebijakan Energi Nasional,
  27. Pribadi, S. Afnimar, Puspito, N.T., Ibrahim, G. (2013), Characteristics of Earthquake-Generated Tsunamis in Indonesia Based on Source Parameters Analysis, Journal of Mathematical and Fundamental Sciences,
  28. Pribadi, S., Fauzi, Kurniawan, T., Sunarko, Suntoko, H., Sudrajat, A., Prayitno, B.S., Riama, N.F. (2021), Manila Trench Tsunami Source Modeling for West Kalimantan Nuclear Facility Mitigation, Journal of Physics: Conference Series,
  29. PUSGEN (2018), Pusat Studi Gempa Nasional, Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017, Pusat Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat, ISBN 978-602-5489-01-3
  30. Schloderer, G., Bingham M., Awange, J.L., Fleming, K.M, (2010), Application of GNSS-RTK derived topographical maps for rapid environmental monitoring: A case study of Jack Finnery Lake (Perth, Australia), Environ Monit Assess 180, 147–161.
  31. Schlurmann, T., Kongko, W., Goseberg, N., Natawidjaja, D.H., Sieh, K (2011), Near-field tsunami hazard map Padang, West Sumatra: Utilizing high resolution geospatial data and reasonable source scenarios, Coastal Engineering Proceedings,
  32. Suntoko, H., Sunarko, Susiati, H., Suryanto, S., Rudi, E., Raharjo, P., Karakteristik Pantai Dan Proses Geologi di Pantai Gosong, Kab. Bengkayang, Kalimantan Barat, JPEN, 23(2), 119-127,
  33. Supartoyo. (2017), Ancaman dan Potensi Gempabumi di Kalimantan, Prosiding Pertemuan Ilmiah Tahunan Riset Kebencanaan Ke 4,1-13, Depok: Universitas Indonesia
  34. UU (2007), Undang-Undang Negara Republik Indonesia No. 24 Tahun 2007 tentang Penanggulangan Bencana
  35. Wang, X. and Power, W. (2011). COMCOT: a Tsunami Generation Prop-agation and Run-up Model, GNS Science Report, 2011/43,129 pp., 2011
  36. Webb, P. (2017), Introduction to Oceanography. Online OER textbook.

Last update:

No citation recorded.

Last update: 2024-03-02 15:06:36

No citation recorded.