skip to main content

A framework to assess solar PV irrigation system (SPIS) for sustainable rice farming in Sorsogon, Philippines

1College of Engineering and Architecture, Sorsogon State University, Sorsogon City, Philippines

2School of Engineering, University of San Carlos, Cebu City, Philippines

3College of Engineering, Nanyang Technological University, Singapore

Received: 15 May 2024; Revised: 18 Jul 2024; Accepted: 2 Aug 2024; Available online: 9 Aug 2024; Published: 1 Sep 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Solar PV irrigation system (SPIS) has proven its potential to impact the agricultural sector. It is known for producing zero GHG emissions, and recent studies have proved its effectiveness compared to fuel-based pumps. However, some factors affecting its operations and economic viability that require further study. This study assessed the viability and sustainability of SPIS for providing rice irrigation in the province of Sorsogon, Philippines. Our objectives were to a) identify the optimal deployment locations, b) determine the most effective energy system configurations for rice irrigation, and c) assess the impact on achieving SDGs. Analysis showed that 17% of the province's total land area is suitable for SPIS deployment. A one-hectare land requires 3.302 kWh of energy per day and a water pump with a peak power of 1.1 kW. The optimal energy configuration provided an annual energy of 8,547 kWh from the Solar PV system and an additional 119 kWh delivered by the diesel generator. This setup demonstrates the lowest net present cost (NPC) of ₱ 1,079,642 and the lowest levelized cost of electricity (LCOE) of ₱ 17.79/kWh. A future SPIS project was assessed to have 27 possible synergies and 3 tradeoffs that impact achieving sustainable development goals (SDGs). The participation of stakeholders, along with local farmers, in discussions about adapting SPIS projects will help ensure the sustainability of the application and the acceptance of the technology. The findings of this study introduced new insights and understanding of the critical aspects of solar PV irrigation system applications.
Fulltext View|Download
Keywords: Solar PV irrigation system (SPIS); Levelized Cost of Electricity (LCOE); Net Present Cost (NPC); Sustainable Development Goals (SDGs)
Funding: ERDT-DOST

Article Metrics:

  1. Al-Shetwi, A. Q., Atawi, I. E., Abuelrub, A., & Hannan, M. A. (2023). Techno-economic assessment and optimal design of hybrid power generation-based renewable energy systems. Technology in Society, 75. https://doi.org/10.1016/j.techsoc.2023.102352
  2. Ashrafi Goudarzi, S., Fazelpour, F., B. Gharehpetian, G., & Rosen, M. A. (2019). Techno-economic assessment of hybrid renewable resources for a residential building in tehran. Environmental Progress and Sustainable Energy, 38(5). https://doi.org/10.1002/ep.13209
  3. Balasubramanian, V., Sie, M., Hijmans, R. J., & Otsuka, K. (2007). Increasing Rice Production in Sub-Saharan Africa: Challenges and Opportunities. In Advances in Agronomy, 94, 55–133. https://doi.org/10.1016/S0065-2113(06)94002-4
  4. Bisaga, I., Parikh, P., Tomei, J., & To, L. S. (2021). Mapping synergies and trade-offs between energy and the sustainable development goals: A case study of off-grid solar energy in Rwanda. Energy Policy, 149. https://doi.org/10.1016/j.enpol.2020.112028
  5. Castor, J., Bacha, K., & Fuso Nerini, F. (2020). SDGs in action: A novel framework for assessing energy projects against the sustainable development goals. Energy Research and Social Science, 68. https://doi.org/10.1016/j.erss.2020.101556
  6. Chandel, S. S., Nagaraju Naik, M., & Chandel, R. (2015). Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. In Renewable and Sustainable Energy Reviews, 49, 1084–1099. Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.04.083
  7. Cogay, S. C., Bayron, R. R., Cantones, R. V, Cogay, S. C., & Amplayo, I. P. (2020). GIS-Based Land Suitability Analysis for Solar Powered Irrigation System in Non-Irrigated Rice Production Areas of Davao Del Norte. Southeastern Philippines Journal of Research and Development, 47. https://doi.org/10.53899/spjrd.v25i1.45
  8. Commer Soc Sci, P. J., Tariq Majeed, M., & Luni, T. (2019). Standard-Nutzungsbedingungen: Renewable Energy, Water, and Environmental Degradation: A Global Panel Data Approach. Pakistan Journal of Commerce and Social Sciences, 13(3). https://hdl.handle.net/10419/205276
  9. Dadak, A., Mousavi, S. A., Mehrpooya, M., & Kasaeian, A. (2022). Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system. Renewable Energy, 201, 1–20. https://doi.org/10.1016/j.renene.2022.10.085
  10. Dehghan, H., Pourfayaz, F., & Shahsavari, A. (2022). Multicriteria decision and Geographic Information System-based locational analysis and techno-economic assessment of a hybrid energy system. Renewable Energy, 198, 189–199. https://doi.org/10.1016/j.renene.2022.07.147
  11. El Hassani, S., Oueslati, F., Horma, O., Santana, D., Moussaoui, M. A., & Mezrhab, A. (2023). Techno-economic feasibility and performance analysis of an islanded hybrid renewable energy system with hydrogen storage in Morocco. Journal of Energy Storage, 68. https://doi.org/10.1016/j.est.2023.107853
  12. Elnozahy, A., Abdel-Salam, M., & Abo-Elyousr, F. K. (2024). Optimal techno-economic energy coordination of solar PV water pumping irrigation systems. Energy, 288. https://doi.org/10.1016/j.energy.2023.129817
  13. Gabr, M. E., & Fattouh, E. M. (2021). Assessment of irrigation management practices using FAO-CROPWAT 8, case studies: Tina Plain and East South El-Kantara, Sinai, Egypt. Ain Shams Engineering Journal, 12(2), 1623–1636. https://doi.org/10.1016/j.asej.2020.09.017
  14. Gbadamosi, S. L., Ogunje, F. S., Wara, S. T., & Nwulu, N. I. (2022). Techno-Economic Evaluation of a Hybrid Energy System for an Educational Institution: A Case Study. Energies, 15(15). https://doi.org/10.3390/en15155606
  15. Havrysh, V., Kalinichenko, A., Szafranek, E., & Hruban, V. (2022). Agricultural Land: Crop Production or Photovoltaic Power Plants. Sustainability (Switzerland), 14(9). https://doi.org/10.3390/su14095099
  16. Hossain, M. A., Hassan, M. S., Mottalib, M. A., & Hossain, M. (2015). Feasibility of solar pump for sustainable irrigation in Bangladesh. International Journal of Energy and Environmental Engineering, 6(2), 147–155. https://doi.org/10.1007/s40095-015-0162-4
  17. Hossein Jahangir, M., Bazdar, E., & Kargarzadeh, A. (2022). Techno-economic and environmental assessment of low carbon hybrid renewable electric systems for urban energy planning: Tehran-Iran. City and Environment Interactions, 16. https://doi.org/10.1016/j.cacint.2022.100085
  18. Javed, M. S., Ma, T., Jurasz, J., & Mikulik, J. (2021). A hybrid method for scenario-based techno-economic-environmental analysis of off-grid renewable energy systems. Renewable and Sustainable Energy Reviews, 139. https://doi.org/10.1016/j.rser.2021.110725
  19. Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2024). Techno-Economic Assessment of Solar–Grid–Battery Hybrid Energy Systems for Grid-Connected University Campuses in Kenya. Electricity, 5(1), 61–74. https://doi.org/10.3390/electricity5010004
  20. Khan, F. A., Pal, N., Saeed, S. H., & Yadav, A. (2022). Modelling and techno-economic analysis of standalone SPV/Wind hybrid renewable energy system with lead-acid battery technology for rural applications. Journal of Energy Storage, 55. https://doi.org/10.1016/j.est.2022.105742
  21. Khattak, S., Yousif, M., Hassan, S. U., Hassan, M., & Alghamdi, T. A. H. (2024). Techno-economic and environmental analysis of renewable energy integration in irrigation systems: A comparative study of standalone and grid-connected PV/diesel generator systems in Khyber Pakhtunkhwa. Heliyon, 10(10). https://doi.org/10.1016/j.heliyon.2024.e31025
  22. Kumar, A., Kumar, K., Kaushik, N., Sharma, S., & Mishra, S. (2010). Renewable energy in India: Current status and future potentials. Renewable and Sustainable Energy Reviews,14( 8), 2434–2442). https://doi.org/10.1016/j.rser.2010.04.003
  23. Lozano, L., Querikiol, E. M., Abundo, M. L. S., & Bellotindos, L. M. (2019). Techno-economic analysis of a cost-effective power generation system for off-grid island communities: A case study of Gilutongan Island, Cordova, Cebu, Philippines. Renewable Energy, 140, 905–911. https://doi.org/10.1016/j.renene.2019.03.124
  24. Luyun, R. A., & Elazegui, D. D. (2019). Issues on communal irrigation systems in the Philippines. 2019–2026. https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidspn1907.pdf
  25. Mainali, B., Luukkanen, J., Silveira, S., & Kaivo-Oja, J. (2018). Evaluating synergies and trade-offs among Sustainable Development Goals (SDGs): Explorative analyses of development paths in South Asia and Sub-Saharan Africa. Sustainability (Switzerland), 10(3). https://doi.org/10.3390/su10030815
  26. Malik, P., Awasthi, M., & Sinha, S. (2022). A techno-economic investigation of grid integrated hybrid renewable energy systems. Sustainable Energy Technologies and Assessments, 51. https://doi.org/10.1016/j.seta.2022.101976
  27. Mohammed Wazed, S., Hughes, B. R., O’Connor, D., & Kaiser Calautit, J. (2018). A review of sustainable solar irrigation systems for Sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 81, 1206–1225. https://doi.org/10.1016/j.rser.2017.08.039
  28. Paul, M., Negahban-Azar, M., Shirmohammadi, A., & Montas, H. (2020). Assessment of agricultural land suitability for irrigation with reclaimed water using geospatial multi-criteria decision analysis. Agricultural Water Management, 231. https://doi.org/10.1016/j.agwat.2019.105987
  29. Petrollese, M., & Cocco, D. (2020). Techno-economic assessment of hybrid CSP-biogas power plants. Renewable Energy, 155, 420–431. https://doi.org/10.1016/j.renene.2020.03.106
  30. Philippine Rice Information System (PRiSM), https://prism.philrice.gov.ph/dataproducts/. (accessed April 20, 2024)
  31. Pojadas, D. J., & Abundo, M. L. S. (2022). A spatial cost-benefit-externality modelling framework for siting of variable renewable energy farms: A case in Bohol, Philippines. Renewable Energy, 181, 1177–1187. https://doi.org/10.1016/j.renene.2021.09.114
  32. Regalado, M. J. C., Yadav, S., Samoy-Pascual, K., De Dios, J. L., Evangelista, G. K., Rafael, M. L., Dorado, J., & Cabangon, R. J. (2019). Irrigation advisory service: A comprehensive solution toward sustainable water management for rice production in the Philippines. 2019 ASABE Annual International Meeting. https://doi.org/10.13031/aim.201900677
  33. Rezk, H., Abdelkareem, M. A., & Ghenai, C. (2019). Performance evaluation and optimal design of stand-alone solar PV-battery system for irrigation in isolated regions: A case study in Al Minya (Egypt). Sustainable Energy Technologies and Assessments, 36. https://doi.org/10.1016/j.seta.2019.100556
  34. Rios, R., & Duarte, S. (2021). Selection of ideal sites for the development of large-scale solar photovoltaic projects through Analytical Hierarchical Process – Geographic information systems (AHP-GIS) in Peru. Renewable and Sustainable Energy Reviews, 149. https://doi.org/10.1016/j.rser.2021.111310
  35. Saheli, M. A., Lari, K., Salehi, G., & Azad, M. T. (2022). Techno-economic assessment of a hybrid on grid PV-wave system: A case study in Caspian Sea. Renewable Energy, 186, 596–608. https://doi.org/10.1016/j.renene.2021.12.146
  36. Sarkar, M. N. I., & Ghosh, H. R. (2017). Techno-economic analysis and challenges of solar powered pumps dissemination in Bangladesh. Sustainable Energy Technologies and Assessments, 20, 33–46. https://doi.org/10.1016/j.seta.2017.02.013
  37. Schmitter, P., Kibret, K. S., Lefore, N., & Barron, J. (2018a). Suitability mapping framework for solar photovoltaic pumps for smallholder farmers in sub-Saharan Africa. Applied Geography, 94, 41–57. https://doi.org/10.1016/j.apgeog.2018.02.008
  38. Shahbandeh, M., “Leading countries based on the production of milled rice in 2022/2023.” Statista. https://www.statista.com/statistics/255945/top-countries-of-destination-for-us-rice-exports-2011/ (accessed April 20, 2024)
  39. Stuecker, M. F., Tigchelaar, M., & Kantar, M. B. (2018). Climate variability impacts on rice production in the Philippines. PLoS ONE, 13(8). https://doi.org/10.1371/journal.pone.0201426
  40. Supapo, K. R. M., Lozano, L., & Querikiol, E. M. (2024). Performance Evaluation of an Existing Renewable Energy System at Gilutongan Island, Cebu, Philippines. Journal of Engineering, 2024, 1–19. https://doi.org/10.1155/2024/3131377
  41. Supapo, K. R. M., Lozano, L., Tabañag, I. D. F., & Querikiol, E. M. (2021). A geospatial approach to energy planning in aid of just energy transition in small island communities in the Philippines. Applied Sciences (Switzerland), 11(24). https://doi.org/10.3390/app112411955
  42. Wamalwa, F., Maqelepo, L., & Williams, N. (2023). Unlocking the nexus potential: A techno-economic analysis of joint deployment of minigrids with smallholder irrigation. Energy for Sustainable Development, 77. https://doi.org/10.1016/j.esd.2023.101345
  43. Xie, H., You, L., Wielgosz, B., & Ringler, C. (2014). Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa. Agricultural Water Management, 131, 183–193. https://doi.org/10.1016/j.agwat.2013.08.011
  44. Yan, Y., Wang, Y., Yan, J., Liu, Z., Liao, Q., & Wang, B. (2023). Tech-economic modeling and analysis of agricultural photovoltaic-water systems for irrigation in arid areas. Journal of Environmental Management, 338. https://doi.org/10.1016/j.jenvman.2023.117858

Last update:

No citation recorded.

Last update: 2024-10-10 13:22:00

No citation recorded.