skip to main content

N/S-doped carbon electrode derived from paper waste as a sustainable electric double-layer capacitor

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan, 57126, Surakarta, Indonesia

2Research Group of Solid State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan, 57126, Surakarta, Indonesia

3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16425, Indonesia

Received: 16 Nov 2024; Revised: 15 Jan 2025; Accepted: 26 Feb 2025; Available online: 5 Mar 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research aims to produce N/S-doped Carbon Electrode derived from paper waste (NSCEp) for Electric Double-Layer Capacitor (EDLC). The paper waste holds potential as raw material for carbon production because of its high cellulose content, abundance of availability, and low price. To enhance the electrical performance of the carbon, an activation step was conducted, followed by double doping with nitrogen and sulfur using thiourea. The NSCEp result was analysed to examine its specific diffraction peaks, crystallinity, morphology, and elemental contents. The NSCEp powder was then mixed with dispersant to produce a homogeneous slurry for the electrode film. The EDLC was assembled in a sandwich-like structure, with sodium hydroxide (NaOH) solution impregnated in a separator between the carbon film electrodes. The EDLC assembly was conducted under an argon atmosphere in a CR2032 coin cell. The results found that the NSCEp provides a high electrical conductivity of 1.21 x 102 S/cm. The prepared EDLC achieved the specific capacitance value of 39.555 F/g as determined by cyclic voltammetry (CV) analysis. Furthermore, the EDLC demonstrates high initial charge-discharge capacities of 300.56 mAh/g and 248.88 mAh/g, respectively, at a current of 0.015 A/g. The capacity remains stable for up to 300 charge-discharge cycles.

Fulltext View|Download
Keywords: Paper Waste; Activated Carbon; Electrode; Capacitor; Biomass
Funding: Universitas Sebelas Maret under contract HRG 194.2/UN27.22/PT.01.02/2024; the Ministry of Higher Education, Research, and Technology through the Student Creativity Program 2023

Article Metrics:

  1. Ahmad, A., & Azam, T. (2019). 4 - Water Purification Technologies. In A. M. Grumezescu & A. M. Holban (Eds.), Bottled and Packaged Water (pp. 83-120): Woodhead Publishing
  2. Ahmed, M. J., Hameed, B. H., & Khan, M. A. (2023). Recent advances on activated carbon-based materials for nitrate adsorption: A review. Journal of Analytical and Applied Pyrolysis, 169, 105856. https://doi.org/10.1016/j.jaap.2022.105856
  3. Ait El Fakir, A., Anfar, Z., Enneiymy, M., Jada, A., & El Alem, N. (2022). New insights into N, S doped carbon from conjugated polymers for efficient persulfate activation: Role of hydrogel beads in enhancement of stability. Chemical Engineering Journal, 442, 136055. https://doi.org/10.1016/j.cej.2022.136055
  4. Alahabadi, A., Singh, P., Raizada, P., Anastopoulos, I., Sivamani, S., Dotto, G. L., Landarani, M., Ivanets, A., Kyzas, G. Z., & Hosseini-Bandegharaei, A. (2020). Activated carbon from wood wastes for the removal of uranium and thorium ions through modification with mineral acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 607, 125516. https://doi.org/10.1016/j.colsurfa.2020.125516
  5. Amalia, A. F. (2023). Doping Ganda N/S Pada Karbon Dari Bagasse Sebagai Elektroda Baterai Ion Sodium. (Bachelor Thesis). Retrieved from digilib.uns.ac.id
  6. Aouay, F., Attia, A., Dammak, L., Ben Amar, R., & Deratani, A. (2024). Activated Carbon Prepared from Waste Coffee Grounds: Characterization and Adsorption Properties of Dyes. Materials, 17(13). https://doi.org/10.3390/ma17133078
  7. Arumugam, B., Mayakrishnan, G., Subburayan Manickavasagam, S. K., Kim, S. C., & Vanaraj, R. (2023). An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application. Crystals, 13(7). https://doi.org/10.3390/cryst13071118
  8. Asnawi, A. S. F. M., Aziz, S. B., Saeed, S. R., Yusof, Y. M., Abdulwahid, R. T., Al-Zangana, S., Karim, W. O., & Kadir, M. F. Z. (2020). Solid-State EDLC Device Based on Magnesium Ion-Conducting Biopolymer Composite Membrane Electrolytes: Impedance, Circuit Modeling, Dielectric Properties and Electrochemical Characteristics. Membranes, 10(12). https://doi.org/10.3390/membranes10120389
  9. Bandaranayake, C. M., Weerasinghe, W. A. D. S. S., Vidanapathirana, K. P., & Perera, K. S. (2016). A Cyclic Voltammetry study of a gel polymer electrolyte based redox-capacitor. Sri Lankan Journal of Physics. https://doi.org/10.4038/sljp.v16i1.8026
  10. Boulanger, N., Talyzin, A. V., Xiong, S., Hultberg, M., & Grimm, A. (2024). High surface area activated carbon prepared from wood-based spent mushroom substrate for supercapacitors and water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, 132684. https://doi.org/10.1016/j.colsurfa.2023.132684
  11. Chai, L., Wang, P., Liu, X., Sun, Y., Li, X., & Pan, J. (2022). Accurately control the micropore/mesopore ratio to construct a new hierarchical porous carbon with ultrahigh capacitance and rate performance. Journal of Power Sources, 532, 231324. https://doi.org/10.1016/j.jpowsour.2022.231324
  12. Chen, J., Lin, J., Luo, J., Tian, Z., Zhang, J., Sun, S., Shen, Y., & Ma, R. (2025). Enhanced CO2 capture performance of N, S co-doped biochar prepared by microwave pyrolysis: Synergistic modulation of microporous structure and functional groups. Fuel, 379, 132987. https://doi.org/10.1016/j.fuel.2024.132987
  13. Chen, L., Chen, Y., Zeng, L., Xu, C., Li, X., Liu, Y., Ouyang, J., Sun, J., Zhou, B., & Hou, Z. (2024). Synthesis of 3D FeS embedded into N, S co–doped carbon nanotube/graphene framework for electrochemical application. International Journal of Hydrogen Energy, 78, 1016-1023. https://doi.org/10.1016/j.ijhydene.2024.06.390
  14. Chen, M., Le, T., Zhou, Y., Kang, F., & Yang, Y. (2020). Thiourea-Induced N/S Dual-Doped Hierarchical Porous Carbon Nanofibers for High-Performance Lithium-Ion Capacitors. ACS Applied Energy Materials, 3(2), 1653-1664. https://doi.org/10.1021/acsaem.9b02157
  15. Chen, Y., Guo, X., Liu, A., Zhu, H., & Ma, T. (2021). Recent progress in biomass-derived carbon materials used for secondary batteries. Sustainable Energy & Fuels, 5(12), 3017-3038. https://doi.org/10.1039/D1SE00265A
  16. Chen, Y., Hu, R., Qi, J., Sui, Y., He, Y., Meng, Q., Wei, F., & Ren, Y. (2019). Sustainable synthesis of N/S-doped porous carbon sheets derived from waste newspaper for high-performance asymmetric supercapacitor. Materials Research Express, 6(9), 095605. https://doi.org/10.1088/2053-1591/ab2d97
  17. Cheng, J., Bi, C., Zhou, X., Wu, D., Wang, D., Liu, C., & Cao, Z. (2023). Preparation of Bamboo-Based Activated Carbon via Steam Activation for Efficient Methylene Blue Dye Adsorption: Modeling and Mechanism Studies. Langmuir, 39(39), 14119-14129. https://doi.org/10.1021/acs.langmuir.3c01972
  18. Chiang, C.-H., Chen, J., & Lin, J.-H. (2020). Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. Journal of Environmental Chemical Engineering, 8(4), 103929. https://doi.org/10.1016/j.jece.2020.103929
  19. Chipembere, F., Biswick, T., & Vunain, E. (2024). Adsorptive removal of cypermethrin from aqueous solution on activated carbon derived from tobacco stem wastes: equilibrium and kinetic studies. Journal of the Iranian Chemical Society, 21(1), 179-191. https://doi.org/10.1007/s13738-023-02916-5
  20. Çiftçi, H., Çalışkan, Ç. E., İçtüzer, Y., & Arslanoğlu, H. (2024). Application of activated carbon obtained from waste vine shoots for removal of toxic level Cu(II) and Pb(II) in simulated stomach medium. Biomass Conversion and Biorefinery, 14(16), 18593-18605. https://doi.org/10.1007/s13399-023-03774-0
  21. Cui, H., Xu, J., Shi, J., Yan, N., Zhang, C., & You, S. (2022). N, S co-doped carbon spheres synthesized from glucose and thiourea as efficient CO2 adsorbents. Journal of the Taiwan Institute of Chemical Engineers, 138, 104441. https://doi.org/10.1016/j.jtice.2022.104441
  22. Dhakal, G., Mohapatra, D., Kim, Y.-I., Lee, J., Kim, W. K., & Shim, J.-J. (2022). High-performance supercapacitors fabricated with activated carbon derived from lotus calyx biowaste. Renewable Energy, 189, 587-600. https://doi.org/10.1016/j.renene.2022.01.105
  23. Domínguez-Ramos, L., Prieto-Estalrich, A., Malucelli, G., Gómez-Díaz, D., Freire, M. S., Lazzari, M., & González-Álvarez, J. (2022). N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation. Sustainability, 14(7). https://doi.org/10.3390/su14073760
  24. Duan, C., Meng, M., Huang, H., Wang, H., Zhang, Q., Gan, W., Ding, H., Zhang, J., Tang, X., & Pan, C. (2023). Performance and characterization of bamboo-based activated carbon prepared by boric acid activation. Materials chemistry and physics, 295, 127130. https://doi.org/10.1016/j.matchemphys.2022.127130
  25. Gakis, G. P., Termine, S., Trompeta, A.-F. A., Aviziotis, I. G., & Charitidis, C. A. (2022). Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chemical Engineering Journal, 445, 136807. https://doi.org/10.1016/j.cej.2022.136807
  26. Gao, F., Zhang, D., Zhang, H., Gao, C., Huang, G., Zhang, Z., Liu, Y., Wang, Y., Terrones, M., & Wang, Y. (2024). Liquid bath-assisted combustion activation preparation of nitrogen/sulfur-doped porous carbon for sodium-ion battery applications. Carbon, 229, 119481. https://doi.org/10.1016/j.carbon.2024.119481
  27. Gao, Y., Yue, Q., Gao, B., & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of The Total Environment, 746, 141094. https://doi.org/10.1016/j.scitotenv.2020.141094
  28. Gergeroglu, H., & Ebeoglugil, M. F. (2022). Investigation of the effect of catalyst type, concentration, and growth time on carbon nanotube morphology and structure. Carbon Letters, 32(7), 1729-1743. https://doi.org/10.1007/s42823-022-00381-3
  29. Ghafourian, H., Zare, K., Sharif, A., & Zamani, Y. (2019). Surface characteristics of different wood and coal-based activated carbons for preparation of carbon molecular sieve. Journal of the Mexican Chemical Society, 63(2), 120-129
  30. Gonçalves Jr, A. C., Zimmermann, J., Schwantes, D., Dias de Oliveira, V. H., Dudczak, F. d. C., Tarley, C. R. T., Prete, M. C., & Snak, A. (2023). Recycling of tobacco wastes in the development of ultra-high surface area activated carbon. Journal of Analytical and Applied Pyrolysis, 171, 105965. https://doi.org/10.1016/j.jaap.2023.105965
  31. Gopalakrishnan, A., & Badhulika, S. (2020). Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of Power Sources, 480, 228830. https://doi.org/10.1016/j.jpowsour.2020.228830
  32. Gopalakrishnan, A., & Badhulika, S. (2021). From onion skin waste to multi-heteroatom self-doped highly wrinkled porous carbon nanosheets for high-performance supercapacitor device. Journal of Energy Storage, 38, 102533. https://doi.org/10.1016/j.est.2021.102533
  33. Guan, J., Fang, Y., Zhang, T., Wang, L., Zhu, H., Du, M., & Zhang, M. (2020). Kelp-Derived Activated Porous Carbon for the Detection of Heavy Metal Ions via Square Wave Anodic Stripping Voltammetry. Electrocatalysis, 11(1), 59-67. https://doi.org/10.1007/s12678-019-00568-9
  34. Hanafiah, S. F. M., Danial, W. H., Samah, M. A. A., Samad, W. Z., Susanti, D., Salim, R. M., & Majid, Z. A. (2019). Extraction and characterization of microfibrillated and nanofibrillated cellulose from office paper waste. Malaysian Journal of Analytical Sciences, 23(5), 901-913. https://doi.org/10.17576/mjas-2019-2305-15
  35. Hegde, S. S., & Bhat, B. R. (2024). Sustainable energy storage: Mangifera indica leaf waste-derived activated carbon for long-life, high-performance supercapacitors. Rsc Advances, 14(12), 8028-8038. https://doi.org/10.1039/D3RA08910J
  36. Heliani, K. R., Rahmawati, F., & Wijayanta, A. T. (2024). Screen printed carbon electrode from coconut shell char for lead ions detection. 2024, 13(1), 12. https://doi.org/10.14710/ijred.2024.57679
  37. Hossain, M. N., Islam, M. D., Rahaman, A., Khatun, N., & Matin, M. A. (2023). Production of cost-effective activated carbon from tea waste for tannery waste water treatment. Applied Water Science, 13(3), 73. https://doi.org/10.1007/s13201-023-01879-5
  38. Jäckel, N., Rodner, M., Schreiber, A., Jeongwook, J., Zeiger, M., Aslan, M., Weingarth, D., & Presser, V. (2016). Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation. Journal of Power Sources, 326, 660-671. https://doi.org/10.1016/j.jpowsour.2016.03.015
  39. Jia, H., Wang, S., Sun, J., Yin, K., Xie, X., & Sun, L. (2019). Nitrogen-doped microporous carbon derived from a biomass waste-metasequoia cone for electrochemical capacitors. Journal of alloys and compounds, 794, 163-170. https://doi.org/10.1016/j.jallcom.2019.04.237
  40. Kamboj, V., & Tiwari, D. P. (2024). Removal of heavy metal (Cu, Cr, and Ni) ions from aqueous solution using derived activated carbon from water hyacinth. Biomass Conversion and Biorefinery, 14(4), 5075-5083. https://doi.org/10.1007/s13399-022-02702-y
  41. Karakilic, E., Gunaltili, E., Ekici, S., Dalkiran, A., Balli, O., & Karakoc, T. H. (2023). A Comparative Study between Paper and Paperless Aircraft Maintenance: A Case Study. Sustainability, 15(20). https://doi.org/10.3390/su152015150
  42. Keskin, B., Altay, B. N., Kurt, A., & Flemıng, P. D. (2020). Sustainability in Paper-Based Packaging. [Kağıt Esaslı Ambalajlarda Sürdürülebilirlik]. Gazi Mühendislik Bilimleri Dergisi, 6(2), 129-137. Retrieved from https://dergipark.org.tr/en/pub/gmbd/issue/56490/772120
  43. Khan, R., Ryu, C., & In, J. B. (2024). Fabrication of modified laser-induced graphene using activated carbon and polyamic acid coating for flexible and high-performance microsupercapacitors. Carbon, 230, 119646. https://doi.org/10.1016/j.carbon.2024.119646
  44. Konukcu, A. C., & Engin, M. (2024). Shredded Waste Office Paper as a Component with Wood Particles in the Production of Particleboard. BioResources, 19(3), 5935-5948. Retrieved from https://ojs.bioresources.com/index.php/BRJ/article/view/23677
  45. Kumar, N., Kim, S. B., Lee, S. Y., & Park, S. J. (2022). Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials (Basel), 12(20). https://doi.org/10.3390/nano12203708
  46. Kumar, S., Singh, P. K., Punetha, V. D., Singh, A., Strzałkowski, K., Singh, D., Yahya, M. Z. A., Savilov, S. V., Dhapola, P. S., & Singh, M. K. (2023). In-situ N/O-heteroatom enriched micro-/mesoporous activated carbon derived from natural waste honeycomb and paper wasp hive and its application in quasi-solid-state supercapacitor. Journal of Energy Storage, 72, 108722. https://doi.org/10.1016/j.est.2023.108722
  47. Kumar, V., Pathak, P., & Bhardwaj, N. K. (2020). Waste paper: An underutilized but promising source for nanocellulose mining. Waste Management, 102, 281-303. https://doi.org/10.1016/j.wasman.2019.10.041
  48. Łątka, J. F., Jasiołek, A., Karolak, A., Niewiadomski, P., Noszczyk, P., Klimek, A., Zielińska, S., Misiurka, S., & Jezierska, D. (2022). Properties of paper-based products as a building material in architecture – An interdisciplinary review. Journal of Building Engineering, 50, 104135. https://doi.org/10.1016/j.jobe.2022.104135
  49. Li, Y., Wang, G., Wei, T., Fan, Z., & Yan, P. (2016). Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy, 19, 165-175. https://doi.org/10.1016/j.nanoen.2015.10.038
  50. Lim, J. M., Jang, Y. S., Van, T. N. H., Kim, J. S., Yoon, Y., Park, B. J., Seo, D. H., Lee, K. K., Han, Z., Ostrikov, K. K., & Doo, S. G. (2023). Advances in high-voltage supercapacitors for energy storage systems: materials and electrolyte tailoring to implementation. Nanoscale Adv, 5(3), 615-626. https://doi.org/10.1039/d2na00863g
  51. Liu, S., Dong, K., Guo, F., Wang, J., Tang, B., Kong, L., Zhao, N., Hou, Y., Chang, J., & Li, H. (2024). Facile and green synthesis of biomass-derived N, O-doped hierarchical porous carbons for high-performance supercapacitor application. Journal of Analytical and Applied Pyrolysis, 177, 106278. doi: https://doi.org/10.1016/j.jaap.2023.106278
  52. Lobato-Peralta, D. R., Duque-Brito, E., Orugba, H. O., Arias, D. M., Cuentas-Gallegos, A. K., Okolie, J. A., & Okoye, P. U. (2023). Sponge-like nanoporous activated carbon from corn husk as a sustainable and highly stable supercapacitor electrode for energy storage. Diamond and Related Materials, 138, 110176. doi: https://doi.org/10.1016/j.diamond.2023.110176
  53. Luo, X., Zhang, W., Han, Y., Chen, X., Zhu, L., Tang, W., Wang, J., Yue, T., & Li, Z. (2018). N,S co-doped carbon dots based fluorescent “on-off-on” sensor for determination of ascorbic acid in common fruits. Food Chemistry, 258, 214-221. doi: https://doi.org/10.1016/j.foodchem.2018.03.032
  54. Ma, X., Yuan, S., Yang, L., Li, L., Zhang, X., Su, C., & Wang, K. (2013). Fabrication and potential applications of CaCO3–lentinan hybrid materials with hierarchical composite pore structure obtained by self-assembly of nanoparticles. CrystEngComm, 15(41), 8288-8299. https://doi.org/10.1039/C3CE41275J
  55. Man, Y., Yan, Y., Wang, X., Ren, J., Xiong, Q., & He, Z. (2023). Overestimated carbon emission of the pulp and paper industry in China. Energy, 273, 127279. https://doi.org/10.1016/j.energy.2023.127279
  56. Manandhar, S., Shrestha, B., Sciortino, F., Ariga, K., & Shrestha, L. K. (2022). Recycling Waste Paper for Further Implementation: XRD, FTIR, SEM, and EDS Studies. Journal of Oleo Science, 71(4), 619-626. https://doi.org/10.5650/jos.ess21396
  57. Manimekala, T., Sivasubramanian, R., Karthikeyan, S., & Dharmalingam, G. (2023). Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications. Journal of Porous Materials, 30(1), 289-301. https://doi.org/10.1007/s10934-022-01338-7
  58. Mariah, M. A. A., Rovina, K., Vonnie, J. M., & Erna, K. H. (2023). Characterization of activated carbon from waste tea (Camellia sinensis) using chemical activation for removal of methylene blue and cadmium ions. South African Journal of Chemical Engineering, 44, 113-122. https://doi.org/10.1016/j.sajce.2023.01.007
  59. Md Salim, R., Asik, J., & Sarjadi, M. S. (2021). Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology, 55(2), 295-313. https://doi.org/10.1007/s00226-020-01258-2
  60. Mestre, A. S., Viegas, R. M. C., Mesquita, E., Rosa, M. J., & Carvalho, A. P. (2022). Engineered pine nut shell derived activated carbons for improved removal of recalcitrant pharmaceuticals in urban wastewater treatment. Journal of Hazardous Materials, 437, 129319. https://doi.org/10.1016/j.jhazmat.2022.129319
  61. Muchakayala, R., Song, S., Wang, J., Fan, Y., Bengeppagari, M., Chen, J., & Tan, M. (2018). Development and supercapacitor application of ionic liquid-incorporated gel polymer electrolyte films. Journal of Industrial and Engineering Chemistry, 59, 79-89. https://doi.org/10.1016/j.jiec.2017.10.009
  62. Nille, O. S., Patil, A. S., Waghmare, R. D., Naik, V. M., Gunjal, D. B., Kolekar, G. B., & Gore, A. H. (2021). Chapter 11 - Valorization of tea waste for multifaceted applications: a step toward green and sustainable development. In R. Bhat (Ed.), Valorization of Agri-Food Wastes and By-Products (pp. 219-236): Academic Press
  63. Olabi, A. G., Abbas, Q., Al Makky, A., & Abdelkareem, M. A. (2022). Supercapacitors as next generation energy storage devices: Properties and applications. Energy, 248, 123617. https://doi.org/10.1016/j.energy.2022.123617
  64. Oloyede, O. O., & Lignou, S. (2021). Sustainable Paper-Based Packaging: A Consumer’s Perspective. Foods, 10(5). https://doi.org/10.3390/foods10051035
  65. Palanichamy, P., Venkatachalam, S., & Gupta, S. (2023). Improved recovery of cellulose nanoparticles from printed wastepaper and its reinforcement in guar gum films. Biomass Conversion and Biorefinery, 13(15), 14113-14125. https://doi.org/10.1007/s13399-022-02516-y
  66. Pameté, E., Köps, L., Kreth, F. A., Pohlmann, S., Varzi, A., Brousse, T., Balducci, A., & Presser, V. (2023). The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading. Advanced Energy Materials, 13(29), 2301008. https://doi.org/10.1002/aenm.202301008
  67. Prasetyo, S. E., Damaraji, G. M., & Kusumawardani, S. S. (2020). A Review of The Challenges of Paperless Concept In The Society 5.0. International Journal of Industrial Engineering and Engineering Management, 2(1), 15 - 24. https://doi.org/10.24002/ijieem.v2i1.3755
  68. Qin, R., Wang, L., Cao, D., Wang, A., Wei, Y., & Li, J. (2022). Thermal simulation experimental study on the difference of molecular structure evolution between vitrinite and inertinite in low-rank coal. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.992017
  69. Rahmawati, F., Amalia, A. F., Ridassepri, A. F., Nakamura, J., & Lee, Y. (2024). A Functional N/S-doped Carbon Electrode from a Carbonized Bagasse Activated with Water Vapor. J. Electrochem. Sci. Technol, 15(4), 466-475. https://doi.org/10.33961/jecst.2024.00017
  70. Rahmawati, F., Heliani, K. R., Wijayanta, A. T., Zainul, R., Wijaya, K., Miyazaki, T., & Miyawaki, J. (2023). Alkaline leaching-carbon from sugarcane solid waste for screen-printed carbon electrode. Chemical Papers, 77(6), 3399-3411. https://doi.org/10.1007/s11696-023-02712-8
  71. Rahmawati, F., Ridassepri, A. F., Chairunnisa, Wijayanta, A. T., Nakabayashi, K., Miyawaki, J., & Miyazaki, T. (2021). Carbon from Bagasse Activated with Water Vapor and Its Adsorption Performance for Methylene Blue. Applied Sciences, 11(2). https://doi.org/10.3390/app11020678
  72. Rajpurohit, A. S., Punde, N. S., Rawool, C. R., & Srivastava, A. K. (2019). Fabrication of high energy density symmetric supercapacitor based on cobalt-nickel bimetallic tungstate nanoparticles decorated phosphorus-sulphur co-doped graphene nanosheets with extended voltage. Chemical Engineering Journal, 371, 679-692. https://doi.org/10.1016/j.cej.2019.04.100
  73. Revathi, A., Palanisamy, P. N., Boopathiraja, R., & Sudha, D. (2024). Heterostructure of Fe2O3 doped Alstonia Scholaris wood waste derived activated carbon based electrode for supercapacitor applications. Diamond and Related Materials, 144, 110953. https://doi.org/10.1016/j.diamond.2024.110953
  74. Ridassepri, A., Rahmawati, F., Raras Heliani, K., Somad, C., Miyawaki, J., & Wijayanta, A. (2020). Activated Carbon from Bagasse and its Application for Water Vapor Adsorption. Evergreen, 7, 409-416. https://doi.org/10.5109/4068621
  75. Rudra, S., Seo, H. W., Sarker, S., & Kim, D. M. (2024). Supercapatteries as Hybrid Electrochemical Energy Storage Devices: Current Status and Future Prospects. Molecules, 29(1). https://doi.org/10.3390/molecules29010243
  76. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., Febriyanto, P., & Eviani, M. (2024). Modification of hydrochar derived from palm waste with thiourea to produce N, S co-doped activated carbon for supercapacitor. Sustainable Chemistry for the Environment, 7, 100132. https://doi.org/10.1016/j.scenv.2024.100132
  77. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., & Kurnia, K. A. (2023). Facile synthesis of N, S-modified activated carbon from biomass residue for promising supercapacitor electrode applications. Bioresource Technology Reports, 21, 101301. https://doi.org/10.1016/j.biteb.2022.101301
  78. Samage, A., Halakarni, M., Yoon, H., & Sanna Kotrappanavar, N. (2024). Sustainable conversion of agricultural biomass waste into electrode materials with enhanced energy density for aqueous zinc-ion hybrid capacitors. Carbon, 219, 118774. https://doi.org/10.1016/j.carbon.2023.118774
  79. Saputra, A. Z. D., Rhohman, F., & Fauzi, A. S. (2022). Analisa Pengolahan Sampah Kertas Menjadi Bahan Baku Dalam Industri Kertas di Indonesia. Universitas Nusantara PGRI Kediri,
  80. Saputri, D. D., Jan’ah, A. M., & Saraswati, T. E. (2020). Synthesis of Carbon Nanotubes (CNT) by Chemical Vapor Deposition (CVD) using a biogas-based carbon precursor: A review. IOP Conference Series: Materials Science and Engineering, 959(1), 012019. https://doi.org/10.1088/1757-899X/959/1/012019
  81. Scialla, S., Carella, F., Dapporto, M., Sprio, S., Piancastelli, A., Palazzo, B., Adamiano, A., Degli Esposti, L., Iafisco, M., & Piccirillo, C. (2020). Mussel Shell-Derived Macroporous 3D Scaffold: Characterization and Optimization Study of a Bioceramic from the Circular Economy. Marine Drugs, 18(6). https://doi.org/10.3390/md18060309
  82. Șen, U., Rodrigues, J. F. G., Almeida, D., Fernandes, Â., Gonçalves, M., Martins, M., Santos, D. M. F., & Pereira, H. (2024). Pine Nutshells and Their Biochars as Sources of Chemicals, Fuels, Activated Carbons, and Electrode Materials. Processes, 12(8). https://doi.org/10.3390/pr12081603
  83. Sharma, S., & Chand, P. (2023). Supercapacitor and electrochemical techniques: A brief review. Results in Chemistry, 5, 100885. https://doi.org/10.1016/j.rechem.2023.100885
  84. Si, W., Zhou, J., Zhang, S., Li, S., Xing, W., & Zhuo, S. (2013). Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochimica Acta, 107, 397-405. https://doi.org/10.1016/j.electacta.2013.06.065
  85. Singh, A. K., Kumar, A., & Chandra, R. (2022). Environmental pollutants of paper industry wastewater and their toxic effects on human health and ecosystem. Bioresource Technology Reports, 20, 101250. https://doi.org/10.1016/j.biteb.2022.101250
  86. Singla, M. K., Gupta, J., Safaraliev, M., Nijhawan, P., Oberoi, A. S., & Menaem, A. A. (2024). Characterization of an activated carbon electrode made from coconut shell precursor for hydrogen storage applications. International Journal of Hydrogen Energy, 61, 1417-1428. https://doi.org/10.1016/j.ijhydene.2024.02.341
  87. Soleymani, J., Shafiei-Irannejad, V., Hamblin, M. R., Hasanzadeh, M., Somi, M. H., & Jouyban, A. (2021). Applications of advanced materials in bio-sensing in live cells: Methods and applications. Materials Science and Engineering: C, 121, 111691. https://doi.org/10.1016/j.msec.2020.111691
  88. Suhas, Gupta, V. K., Carrott, P. J. M., Singh, R., Chaudhary, M., & Kushwaha, S. (2016). Cellulose: A review as natural, modified and activated carbon adsorbent. Bioresource Technology, 216, 1066-1076. https://doi.org/10.1016/j.biortech.2016.05.106
  89. Tonoya, T., Ando, H., Takeichi, N., Senoh, H., Kojima, T., Hinago, H., Matsui, Y., & Ishikawa, M. (2023). Capacity Decay Mechanism of Lithium–Sulfur Batteries Using a Microporous Activated Carbon–Sulfur Composite as the Cathode Material. The Journal of Physical Chemistry C, 127(21), 10038-10044. https://doi.org/10.1021/acs.jpcc.3c01961
  90. Tumimomor, F., Maddu, A., & Pari, G. (2017). Pemanfaatan Karbon Aktif Dari Bambu Sebagai Elektroda Superkapasitor Jurnal Ilmiah Sains, 17(1), 73-79. https://doi.org/10.35799/jis.17.1.2017.15802
  91. Uppugalla, S., Pothu, R., Boddula, R., Desai, M. A., & Al-Qahtani, N. (2023). Nitrogen and sulfur co-doped activated carbon nanosheets for high-performance coin cell supercapacitor device with outstanding cycle stability. Emergent Materials, 6(4), 1167-1176. https://doi.org/10.1007/s42247-023-00503-1
  92. Wan, L., Wei, W., Xie, M., Zhang, Y., Li, X., Xiao, R., Chen, J., & Du, C. (2019). Nitrogen, sulfur co-doped hierarchically porous carbon from rape pollen as high-performance supercapacitor electrode. Electrochimica Acta, 311, 72-82. https://doi.org/10.1016/j.electacta.2019.04.106
  93. Wang, C., Huang, R., Sun, R., Yang, J., & Sillanpää, M. (2021). A review on persulfates activation by functional biochar for organic contaminants removal: Synthesis, characterizations, radical determination, and mechanism. Journal of Environmental Chemical Engineering, 9(5), 106267. https://doi.org/10.1016/j.jece.2021.106267
  94. Wu, Q., He, T., Zhang, Y., Zhang, J., Wang, Z., Liu, Y., Zhao, L., Wu, Y., & Ran, F. (2021). Cyclic stability of supercapacitors: materials, energy storage mechanism, test methods, and device. Journal of Materials Chemistry A, 9(43), 24094-24147. https://doi.org/10.1039/D1TA06815F
  95. Wu, S., Wei, D., Yin, Y., Li, Q., Wang, H., Chen, W., Jiang, Y., & Tao, X. (2021). N, S co-doped activated carbon with porous architecture derived from partial poly (2, 2′-dithiodianiline) for supercapacitors. Journal of Energy Storage, 33, 102043. https://doi.org/10.1016/j.est.2020.102043
  96. Yang, I., Yoo, J., Kwon, D., Choi, D., Kim, M.-S., & Jung, J. C. (2020). Improvement of a commercial activated carbon for organic electric double-layer capacitors using a consecutive doping method. Carbon, 160, 45-53. https://doi.org/10.1016/j.carbon.2020.01.024
  97. Yang, K., Fan, Q., Song, C., Zhang, Y., Sun, Y., Jiang, W., & Fu, P. (2023). Enhanced functional properties of porous carbon materials as high-performance electrode materials for supercapacitors. Green Energy and Resources, 1(3), 100030. https://doi.org/10.1016/j.gerr.2023.100030
  98. Yousufi, M. (2023). Exploring paperless working: A step towards low carbon footprint. European Journal of Sustainable Development Research, 7. https://doi.org/10.29333/ejosdr/13410
  99. Yuan, Q., Ma, Z., Chen, J., Huang, Z., Fang, Z., Zhang, P., Lin, Z., & Cui, J. (2020). N, S-Codoped Activated Carbon Material with Ultra-High Surface Area for High-Performance Supercapacitors. Polymers, 12(9). https://doi.org/10.3390/polym12091982
  100. Zhai, Z., Zhang, L., Du, T., Ren, B., Xu, Y., Wang, S., Miao, J., & Liu, Z. (2022). A review of carbon materials for supercapacitors. Materials & Design, 221, 111017. https://doi.org/10.1016/j.matdes.2022.111017

Last update:

No citation recorded.

Last update: 2025-05-23 18:48:10

No citation recorded.