Chemistry Department, Faculty of Science, Naresuan University, Phitsanulok, Thailand
BibTex Citation Data :
@article{IJRED61128, author = {Sumrit Mopoung and Wanvilai Singse}, title = {Cotton-derived biochar fibers modified by doping Al2O3 and MgSO4 for application to hydrogen storage}, journal = {International Journal of Renewable Energy Development}, volume = {14}, number = {3}, year = {2025}, keywords = {Cotton fiber; Activated biochar fiber; Aluminium oxide; Magnesium sulphate; Hydrogen storage}, abstract = { Biochar fiber and activated biochar fibers from cotton fiber were prepared by carbonization at 400-700°C and activation with 5 wt.% Al 2 O 3 and MgSO 4 , respectively. The final products were characterized by BET, FTIR, XRD, and SEM-EDS. The hydrogen storage of the final products at 1.5 bar pressure and room temperature was studied. The objective of this research was to study the effects of Al 2 O 3 or MgSO 4 on activation and doping of Al or Mg compounds on cotton fibers and hydrogen storage of products at low pressure and room temperature. The results showed that the surface areas, micropore volumes, and average pore sizes developed well with increasing carbonization temperatures from 400°C to 700°C. In addition, the surface functional groups such as OH, C=O, COOH and C-O-C were also more developed with increasing carbonization temperature. Furthermore, the results confirmed that MgO or Al 2 O 3 accumulated on the surface of the composites. The results of hydrogen storage showed that hydrogen uptake capacity due to spillover mechanism increased with increasing of carbonization temperature from 400°C to 700°C during the preparation of biochar fiber and activated biochar fibers. The hydrogen capacity at room temperature and 1.5 bar fell within the range of 0.32-0.44 wt.%, 0.45-0.52 wt.%, and 0.59-0.63 wt.% for biochar fiber, Mg-activated biochar fibers, and Al-activated biochar fibers, respectively. This is because hydrogen molecules bonded on the surface of the products with physisorption. Therefore, hydrogen desorbs even at low temperature. It was concluded that metal biochar fibers made from cotton fiber with doping and activation by Al 2 O 3 and MgSO 2 at 400-700°C are candidate adsorbers for hydrogen storage under 1.5 bar and room temperature with fast kinetics (within 30 min), quite high sorption selectivity/capacity (up 0.63 wt.%), and sorption stability/reversibility (at room temperature and 80°C). }, pages = {518--527} doi = {10.61435/ijred.2025.61128}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/61128} }
Refworks Citation Data :
Biochar fiber and activated biochar fibers from cotton fiber were prepared by carbonization at 400-700°C and activation with 5 wt.% Al2O3 and MgSO4, respectively. The final products were characterized by BET, FTIR, XRD, and SEM-EDS. The hydrogen storage of the final products at 1.5 bar pressure and room temperature was studied. The objective of this research was to study the effects of Al2O3 or MgSO4 on activation and doping of Al or Mg compounds on cotton fibers and hydrogen storage of products at low pressure and room temperature. The results showed that the surface areas, micropore volumes, and average pore sizes developed well with increasing carbonization temperatures from 400°C to 700°C. In addition, the surface functional groups such as OH, C=O, COOH and C-O-C were also more developed with increasing carbonization temperature. Furthermore, the results confirmed that MgO or Al2O3 accumulated on the surface of the composites. The results of hydrogen storage showed that hydrogen uptake capacity due to spillover mechanism increased with increasing of carbonization temperature from 400°C to 700°C during the preparation of biochar fiber and activated biochar fibers. The hydrogen capacity at room temperature and 1.5 bar fell within the range of 0.32-0.44 wt.%, 0.45-0.52 wt.%, and 0.59-0.63 wt.% for biochar fiber, Mg-activated biochar fibers, and Al-activated biochar fibers, respectively. This is because hydrogen molecules bonded on the surface of the products with physisorption. Therefore, hydrogen desorbs even at low temperature. It was concluded that metal biochar fibers made from cotton fiber with doping and activation by Al2O3 and MgSO2 at 400-700°C are candidate adsorbers for hydrogen storage under 1.5 bar and room temperature with fast kinetics (within 30 min), quite high sorption selectivity/capacity (up 0.63 wt.%), and sorption stability/reversibility (at room temperature and 80°C).
Article Metrics:
Last update:
Last update: 2025-05-22 20:36:37
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.