skip to main content

Cotton-derived biochar fibers modified by doping Al2O3 and MgSO4 for application to hydrogen storage

Chemistry Department, Faculty of Science, Naresuan University, Phitsanulok, Thailand

Received: 4 Feb 2025; Revised: 25 Mar 2025; Accepted: 6 Apr 2025; Available online: 9 Apr 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Biochar fiber and activated biochar fibers from cotton fiber were prepared by carbonization at 400-700°C and activation with 5 wt.% Al2O3 and MgSO4, respectively. The final products were characterized by BET, FTIR, XRD, and SEM-EDS. The hydrogen storage of the final products at 1.5 bar pressure and room temperature was studied. The objective of this research was to study the effects of Al2O3 or MgSO4 on activation and doping of Al or Mg compounds on cotton fibers and hydrogen storage of products at low pressure and room temperature. The results showed that the surface areas, micropore volumes, and average pore sizes developed well with increasing carbonization temperatures from 400°C to 700°C. In addition, the surface functional groups such as OH, C=O, COOH and C-O-C were also more developed with increasing carbonization temperature. Furthermore, the results confirmed that MgO or Al2O3 accumulated on the surface of the composites. The results of hydrogen storage showed that hydrogen uptake capacity due to spillover mechanism increased with increasing of carbonization temperature from 400°C to 700°C during the preparation of biochar fiber and activated biochar fibers. The hydrogen capacity at room temperature and 1.5 bar fell within the range of 0.32-0.44 wt.%, 0.45-0.52 wt.%, and 0.59-0.63 wt.% for biochar fiber, Mg-activated biochar fibers, and Al-activated biochar fibers, respectively. This is because hydrogen molecules bonded on the surface of the products with physisorption. Therefore, hydrogen desorbs even at low temperature. It was concluded that metal biochar fibers made from cotton fiber with doping and activation by Al2O3 and MgSO2 at 400-700°C are candidate adsorbers for hydrogen storage under 1.5 bar and room temperature with fast kinetics (within 30 min), quite high sorption selectivity/capacity (up 0.63 wt.%), and sorption stability/reversibility (at room temperature and 80°C).

Fulltext View|Download
Keywords: Cotton fiber; Activated biochar fiber; Aluminium oxide; Magnesium sulphate; Hydrogen storage

Article Metrics:

  1. Ameen, S., Hussain, Z., Din, M. I., Khan, R. U., & Khalid, R. (2024). Green synthesis of biochar@Al2O3 nanocomposite from waste melia azedarach fruit biomass pyrolysis: A sustainable solution for photocatalytic methylene blue dye degradation. Desalination and Water Treatment, 320, 100609; https://doi.org/10.1016/j.dwt.2024.100609
  2. Anuchitsakol, S., Dilokekunakul, W., Khongtor, N., Chaemchuen, S., & Klomkliang, N. (2023). Combined experimental and simulation study on H2 storage in oxygen and nitrogen co-doped activated carbon derived from biomass waste: superior pore size and surface chemistry development. RSC Advances, 13, 36009; https://doi.org/10.1039/d3ra06720c
  3. ASTM (1998) Standard Test Method for Volatile Matter Content of Activate Carbon. ASTM D 5832-98. American Society for Testing and Materials, Pennsylvania
  4. ASTM (2011) Standard Test Method for Total Ash content of Activate Carbon. ASTM D 2866-11. American Society for Testing and Materials, Pennsylvania
  5. ASTM (2021) Standard Practice for Proximate Analysis of Coal and Coke. ASTM D3172-13(2021)e1. American Society for Testing and Materials, Pennsylvania
  6. Awais, H., Nawab, Y., Amjad, A., Anjang, A., Md Akil, H., & Abidin, M. S. Z. (2021). Environmental benign natural fibre reinforced thermoplastic composites: A review. Composites Part C, 4, 100082; https://doi.org/10.1016/j.jcomc.2020.100082
  7. Bader, N., Zacharia, R., Abdelmottaleb, O., & Cossement, D. (2018). How the activation process modifies the hydrogen storage behavior of biomass-derived activated carbons. Journal of Porous Materials, 25, 221–234; https://doi.org/10.1007/s10934-017-0436-8
  8. Buaki-Sogó, M., Zubizarreta, L., García-Pellicer, M., & Quijano-López, A. (2020). Sustainable carbon as efficient support for metal-based nanocatalyst: Applications in energy harvesting and storage. Molecules, 25(14), 3123; https://doi.org/10.3390/molecules25143123
  9. Costal, G. Z., Oliveira, C. E. M., Morais, E. A. de., Oliveira, C. A. de S., Silva, E. E. da., Filho, F. M., & Geraldo, V. (2021). High-yield synthesis of carbon nanotubes in-situ on iron ore tailing. Carbon Trends, 5, 100098; https://doi.org/10.1016/j.cartre.2021.100098
  10. Fomkin, A., Pribylov, A., Men’shchikov, I., Shkolin, A., Aksyutin, O., Ishkov, A., Romanov, K., & Khozina, E. (2021). Adsorption-based hydrogen storage in activated carbons and model carbon structures. Reactions, 2, 209–226; https://doi.org/10.3390/reactions 2030014
  11. Guo, T., Ma, N., Pan, Y., Bedane, A. H., Xiao, H., Eić, M., & Du, Y. (2018). Characteristics of CO2 adsorption on biochar derived from biomass pyrolysis in molten salt. The Canadian Journal of Chemical Engineering, 96(11), 2352-2360; https://doi.org/10.1002/cjce.23153
  12. Gutsanu, V., Petuhov, O., Ipate, A. M., Lisa, G., & Botnaru, M. (2023). Metal/carbon composites: Precursors for obtaining new sorbents-catalysts. Colloid Journal, 85, 871–888; https://doi.org/10.1134/S1061933X23600537
  13. Hasana, N. H., Wahi, R., Yusof, Y., & Mubarak, N. M. (2021). Magnesium-palm kernel shell biochar composite for effective methylene blue removal: Optimization via response surface methodology. Pertanika Journal of Science and Technology, 29(3), 1451-1473; https://doi.org/10.47836/pjst.29.3.28
  14. Hirscher, M., Yartys, V. A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman, R. C., Broom, D. P., Buckley, C. E., Chang, F., Chen, P., Cho, Y. W., Crivello, J. C., Cuevas, F., David, W. I. F, de Jongh, P. E., Denys, R. V., Dornheim, M., Felderhoff, M., Filinchuk, Y., & Zlotea, C. (2020). Materials for hydrogen-based energy storage – past, recent progress and future outlook. Journal of Alloys and Compounds, 827, 153548; https://doi.org/10.1016/j.jallcom.2019.153548
  15. Hu, B., Yan, N., Zheng, Z., Xu, L., Xie, H., & Chen, J. (2023). Recyclable magnesium-modified biochar beads for efficient removal of phosphate from wastewater. Nanomaterials, 13(6), 966; https://doi.org/10.3390/nano13060966
  16. Hwang, S. H., Kim, Y. K., Seo, H. J., Jeong, S. M., Kim, J., & Lim, S. K. (2021). The enhanced hydrogen storage capacity of carbon fibers: The effect of hollow porous structure and surface modification. Nanomaterials, 11(7), 1830; https://doi.org/10.3390/nano11071830
  17. Kaluža, L., Soukup, K., Koštejn, M., Karban, J., Palcheva, R., Laube, M., & Gulková, D. (2022). On stability of high-surface-area Al2O3, TiO2, SiO2-Al2O3, and activated carbon supports during preparation of NiMo sulfide catalysts for parallel deoxygenation of octanoic acid and hydrodesulfurization of 1-benzothiophene. Catalysts, 12(12), 1559; https://doi.org/10.3390/catal12121559
  18. Khafidz, N. Z. Abd. K., Yaakob, Z., Timmiati, S. N., Lin, K. S., & Lim, K. L. (2019). Hydrogen sorption of magnesium oxide carbon nanofibre composite. Malaysian Journal of Analytical Sciences, 23(1), 60-70; https://doi.org/10.17576/mjas-2019-2301-08
  19. Khan, A., Iftikhar, K., Mohsin, M., Ahmad, J., Sahar, N., Rovere, M., & Tagliaferro, A. (2022). Low temperature synthesis of carbon fibres from post-consumer textile waste and their application to composites: An ecofriendly approach. Diamond and Related Materials, 130, 109504; https://doi.org/10.1016/j.diamond.2022.109504
  20. Konni, M., & Mukkamala, S. B. (2019). Synthesis and hydrogen storage performance of Al2O3 nanoparticle decorated functionalized multi-walled carbon nanotubes (Al2O3@f-MWCNTs). Journal of the Indian Chemical Society, 96, 269-274
  21. Kryazheva, Y. G, Anikeevaa, I. V., Trenikhina, M. V., Zapevalovaa, E. S., & Semenova, O. N. (2019). Synthesis of metal–carbon composites with transition metal nanoparticles distributed as metal core–graphite-like shell structures in the bulk of an amorphous carbon matrix. Solid Fuel Chemistry, 53(5), 289-293; https://doi.org/10.3103/S0361521919050069.m
  22. Kurosawa, R., Takeuchi, M., & Ryu, J. (2021). Fourier-transform infrared and X-ray diffraction analyses of the hydration reaction of pure magnesium oxide and chemically modified magnesium oxide. RSC Advances, 11(39), 24292-24311; http://dx.doi.org/10.1039/D1RA04290D
  23. Lan, G., Yang, J., Ye, R., Boyjoo, Y., Liang, J., Liu, X., Li, Y., Liu, J., & Qian, K. (2021). Sustainable carbon materials toward emerging applications. Small Methods, 5(5), 2001250; https://doi.org/10.1002/smtd.202001250
  24. Lee, W. G. (2020). Synthesis of metal-carbon composite composed of expanded graphite and nanometal. ECS Meeting Abstracts, MA2020-02, 1141; https://doi.org/10.1149/MA2020-0271141mtgabs
  25. Li, K., Zhu, Y., Cao, H., Zhang, H., Wu, Y., Li, X., Xu, Z., & Liu, Q. (2024). Graphite made from coal by high-temperature treatment: An insight into the nanometric carbon structural evolution. Minerals, 14(11), 1092; https://doi.org/10.3390/min14111092
  26. Okhrimenko, L., Favergeon, L., Johannes, K., & Kuznik, F. (2020). New kinetic model of the dehydration reaction of magnesium sulfate hexahydrate: Application for heat storage. Thermochimica acta, 687, 178569; https://doi.org/10.1016/j.tca.2020.178569
  27. Osman, A. I., Ayati, A, Farrokhi, M., Khadempir, S., Rajabzadeh, Amin R., Farghali, M., Krivoshapkin, P., Tanhaei, B., Rooney, D. W., & Yap, P. S. (2024). Innovations in hydrogen storage materials: Synthesis, applications, and prospects. Journal of Energy Storage, 95, 112376; https://doi.org/10.1016/j.est.2024.112376
  28. Özdemi̇r, H., & Faruk Öksüzömer, M. A. (2020). Synthesis of Al2O3, MgO and MgAl2O4 by solution combustion method and investigation of performances in partial oxidation of methane. Powder Technology, 359, 107-117; https://doi.org/10.1016/j.powtec.2019.10.001
  29. Rattana-amron, T., Laosiripojana, N., & Kangwansupamonkon, W. (2024). Thermal oxidative degradation behavior of extracted lignins from agricultural wastes: Kinetic and thermodynamic analysis. Industrial Crops and Products, 219, 119096; https://doi.org/10.1016/j.indcrop.2024.119096
  30. Saleh, M. E., & Hedia, R. M. R. (2018). Mg-modified sugarcane bagasse biochar for dual removal of ammonium and phosphate ions from aqueous solutions. Alexandria Science Exchange Journal, 9(1), 74-91; https://doi.org/10.21608/asejaiqjsae.2018.5753
  31. Samantaray, S. S., Mangisetti, S. R., & Ramaprabhu, S. (2019). Investigation of room temperature hydrogen storage in biomass derived activated carbon. Journal of Alloys and Compounds, 789, 800-804; https://doi.org/10.1016/j.jallcom.2019.03.110
  32. Shen, H., Li, H., Yang, Z., & Li, C. (2022). Magic of hydrogen spillover: Understanding and application. Green Energy and Environment, 7(6), 1161-1198; https://doi.org/10.1016/j.gee.2022.01.013
  33. Shun. K., Mori, K., Kidawara, T., Satoshi Ichikawa, S., & Yamashita, H. (2024). Heteroatom doping enables hydrogen spillover via H+/e− diffusion pathways on a non-reducible metal oxide. Nature Communications, 15, 6403; https://doi.org/10.1038/s41467-024-50217-z
  34. Shang, Y., Pistidda, C., Gizer, G., Klassen, T., & Dornheim, M. (2021). Mg-based materials for hydrogen storage. Journal of Magnesium and Alloys, 9(6), 1837-1860; https://doi.org/10.1016/j.jma.2021.06.007
  35. Sharon, M., Sharon, M., Kalita, G., & Mukherjee, B. (2011). Hydrogen storage by carbon fibers synthesized by pyrolysis of cotton fibers. Carbon Letters, 12(1), 39-43; https://doi.org/10.5714/CL.2011.12.1.039
  36. Souvakon, C., Vorasingha, A., Mopoung, S., & Vongkunghae, A. (2011). Synthesis and characterization of dehydroannulene carbon allotrope apply for hydrogen fuel storage. International Journal of Physical Sciences, 6(6), 1477-1483; https://doi.org/10.5897/IJPS10.171
  37. Souza, B., Souza, R. Santos, I., & Brocchi, E. (2020). MgSO4 carbothermic reductive decomposition to produce a highly reactive MgO powder. Journal of Materials Research and Technology, 9( 2), 1847-1855; https://doi.org/10.1016/j.jmrt.2019.12.017
  38. Suaebah, E., Yunata, E. E., & Wijaya, A. S. N. (2024). The sintering temperature effect of alumina (Al2O3) ceramic using the sol-gel method. Journal of Physics: Conference Series, 2900, 012044; https://doi.org/10.1088/1742-6596/2900/1/012044
  39. Sulaiman, M., Che Su, N., & Mohamed, N. S. (2017). Sol-gel synthesis and characterization of β-MgSO4:Mg(NO3)2–MgO composite solid electrolyte. Ionics, 23, 443–452; https://doi.org/10.1007/s11581-016-1854-3
  40. Sultana, A. I., Saha, N., & Reza, M. T. (2021). Synopsis of factors affecting hydrogen storage in biomass-derived activated carbons. Sustainability, 13, 1947; https://doi.org/10.3390/su13041947
  41. Sun, W., Bai, L., Chi, M., Xu, X., Chen, Z., & Yu, K. (2023). Study on the evolution pattern of the aromatics of lignin during hydrothermal carbonization. Energies, 16(3), 1089; https://doi.org/10.3390/en16031089
  42. Tao, Y., Feng, W., He, Z., Wang, B., Yang, F., Nafsun, A. I., & Zhang, Y. (2024). Utilization of cotton byproduct-derived biochar: a review on soil remediation and carbon sequestration. Environmental Sciences Europe, 36, 79; https://doi.org/10.1186/s12302-024-00908-7
  43. Thummajitsakul, S., & Silprasit, K. (2022). Analysis of FTIR spectra, flavonoid content and anti-tyrosinase activity of extracts and lotion from garcinia schomburgkiana by multivariate method. Trends in Sciences, 19(18), 5780; https://doi.org/10.48048/tis.2022.5780
  44. Urbonavicius, M., Varnagiris, S., Pranevicius, L., & Milcius, D. (2020). Production of gamma alumina using plasma-treated aluminum and water reaction byproducts. Materials, 13, 1300; https://doi.org/10.3390/ma13061300
  45. Viswanathan, B. (2024). Options for solid state hydrogen storage. Indian Institute of Technology, Madras, pp 139
  46. Xiao, J., Long, H., He, X., Chen, G., Yuan, T., Liu, Y., & Xu, Q. (2024). Synthesis of MgO-coated canna biochar and its application in the treatment of wastewater containing phosphorus. Water, 16(6), 873; https://doi.org/10.3390/w16060873
  47. Xiao, W., Cheng, M., Liu, Y., Wang, J., Zhang, G., Wei, Z., Li, L., Du, L., Wang, G., & Liu, H. (2023). Functional metal/carbon composites derived from metal–organic frameworks: Insight into structures, properties, performances, and mechanisms. ACS Catalysis, 13(3), 1759-1790; https://doi.org/10.1021/acscatal.2c04807
  48. Xu, Z., Wang, Y., Wu, M., & Chen, W. (2023). Preparation of biochar derived from waste cotton woven by low-dosage Fe(NO3)3 activation: characterization, pore development, and adsorption. Environmental Science and Pollution Research, 30, 49523–49535; https://doi.org/10.1007/s11356-023-25820-0
  49. Yadav, K., & Ray, N. (2023). Hydrogen adsorption and diffusion through two-dimensional aluminium: A first-principles investigation. Journal of Physics: Conference Series, 2518, 012018; https://doi.org/10.1088/1742-6596/2518/1/012018
  50. Yao, J., Wang, L., Xie, D., Jiang, L, Li, J., & Fang, X. (2022). Nanocarbon-based catalysts for selective n.itroaromatic hydrogenation: A mini review. Frontiers in Chemistry, 10, 1000680; https://doi.org/10.3389/fchem.2022.1000680
  51. Zaghloul, M. Y. M., Zaghloul, M. M. Y., & Zaghloul, M. M. Y. Z. (2021). Developments in polyester composite materials – An in-depth review on natural fibres and nano fillers. Composite Structures, 278, 114698; https://doi.org/10.1016/j.compstruct.2021.114698
  52. Zhou, K., Li, L., Ma, X., Mo, Y., Chen, R., Li, H., & Li, H. (2018). Activated carbons modified by magnesium oxide as highly efficient sorbents for acetone. RSC Advances, 8(6), 2922-2932; http://dx.doi.org/10.1039/C7RA11740J
  53. Zhou, L., Zhong, M. Q., Wang, T., Liu, J. X., Mei, M., Chen, S., & Li, J. P. (2022). Study on the pyrolysis and adsorption behavior of activated carbon derived from waste polyester textiles with different metal salts. Materials, 15(20):7112. https://doi.org/10.3390/ma15207112

Last update:

No citation recorded.

Last update: 2025-05-22 20:36:37

No citation recorded.