skip to main content

|  Research Results
Supplementary Data File
Subject
Type Research Results
  Download (4MB)    Indexing metadata
 common.other
Similarity Report
Subject
Type Other
  Download (1MB)    Indexing metadata

Enhancing Cold Flow Properties of Palm Biodiesel: Quantitative Comparison of Improvement Methods via Fatty Ester Isomerization and Bio-additive Introduction

1Department of Bioenergy Engineering and Chemurgy, Institut Teknologi Bandung, Jalan Raya Jatinangor KM 20.75 Sumedang, Indonesia, 45363, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia, Indonesia

3Master Program of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia, Indonesia

4 Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, Indonesia, Indonesia

View all affiliations
Received: 7 Nov 2025; Published: 14 Jan 2026.
Editor(s): Editor Office
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Biodiesel is a cleaner and renewable combustion fuel that globally serves as an effective alternative to fossil diesel. The current application of this biofuel is still restricted to specific concentration due to its poor cold flow properties (CFPs). Nevertheless, some enhancement methods lead to deterioration of other properties, especially oxidation stability (OS). Later, isomerization process was offered to improve cold flow properties chemically with minimum impact on oxidation stability. In this study, palm-biodiesel isomerization was carried out atmospherically using SO4/SnO2 catalyst in the stirred batch reactor at temperature of 200oC, catalyst loading of 10 wt%, stirring speed of 900 rpm, and under N2 flow. The performance of catalyst and the effect of isomerization on CFPs and OS were investigated. For comparative study, the effect of bio-additive (turpentine oil and α-terpineol) introduction, at concentrations of 1, 3, 5 vol%, on CFPs and OS was also evaluated. The isomerization results demonstrated a conversion ratio of 29.0% and an isomerization selectivity of 69.7%. This reaction had a slight improving effect on both CFPs (ΔPP = ‒1oC; ΔCP = 0.5oC) and OS (ΔOS = 1.36 h). Furthermore, the best insertion of bio-additives demonstrated a more significant enhancement in CFPs (ΔPP = ‒1oC; ΔCP = ‒1.75oC). Nevertheless, it significantly reduced OS level (ΔOS = ‒11 h).

Note: This article has supplementary file(s).

Keywords: Biodiesel, cold flow properties, oxidation stability; isomerization; SO4/SnO2 catalyst; bio-additive
Funding: Center for Higher Education funding and Assessment (PPAPT); Endowment Fund for Education Agency (LPDP) under contract 01198/BPPT/BPI.06/9/2023; Asahi Glass Foundation under contract 4274a/IT1.C07.2/TA.00/2025

Article Metrics:

  1. Achmad, A. K. F., Fathurrahman, N. A., Kunarti, E. S., Wibowo, C. S., Khalil, M., & Al-Saadi, A. A. (2025). Optimizing cold-flow properties and oxidation stability of B40 biodiesel blend with turpentine oil and ethanol: Experimental and quantum chemical approach. Fuel, 381, 133258. https://doi.org/10.1016/j.fuel.2024.133258
  2. Akkera, H. S., Mann, V., Varalakshmi, B. N., Ploloju, M., Kambhala, N., & Venkatesh, G. (2023). Effect of Sr-doped on physical and photoluminescence properties of SnO2 transparent conducting oxide thin films. Journal of Materials Science: Materials in Electronics, 34(12), 1044. https://doi.org/10.1007/s10854-023-10473-z
  3. Alaya, M. N., & Rabah, M. A. (2017). Some physico-chemical properties and catalytic activity of sulfate ion supported on WO3/SnO2 catalyst. Arabian Journal of Chemistry, 10, S439–S449. https://doi.org/10.1016/j.arabjc.2012.10.004
  4. Amran, N. A., Bello, U., & Hazwan Ruslan, M. S. (2022). The role of antioxidants in improving biodiesel’s oxidative stability, poor cold flow properties, and the effects of the duo on engine performance: A review. Heliyon, 8(7), e09846. https://doi.org/10.1016/j.heliyon.2022.e09846
  5. Anwar, A., & Garforth, A. (2016). Challenges and opportunities of enhancing cold flow properties of biodiesel via heterogeneous catalysis. Fuel, 173, 189–208. https://doi.org/10.1016/j.fuel.2016.01.050
  6. Arata, K., Matsuhashi, H., Hino, M., & Nakamura, H. (2003). Synthesis of solid superacids and their activities for reactions of alkanes. Catalysis Today, 81(1), 17–30. https://doi.org/10.1016/S0920-5861(03)00098-1
  7. Busto, M., Dosso, L. A., Vera, C. R., & Grau, J. M. (2012). Composite catalysts of Pt/SO42-ZrO2 and Pt/WO3-ZrO2 for producing high octane isomerizate by isomerization-cracking of long paraffins. Fuel Processing Technology, 104, 128–135. https://doi.org/10.1016/j.fuproc.2012.04.040
  8. Dey, S., Reang, N. M., Das, P. K., & Deb, M. (2021). A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. Journal of Cleaner Production, 286, 124981. https://doi.org/10.1016/j.jclepro.2020.124981
  9. Hino, M., Takasaki, S., Furuta, S., Matsuhashi, H., & Arata, K. (2007). meta-Stannic acid as an effective support for the preparation of sulfated and tungstated stannias. Applied Catalysis A: General, 321(2), 147–154. https://doi.org/10.1016/j.apcata.2007.01.044
  10. Jhoni, F. A. M., & Pradana, Y. S. (2025). Bio-crude oil production from microalgae Nannochloropsis sp. via non-catalytic hydrothermal liquefaction. AIP Conference Proceedings, 3295, 040003. https://doi.org/10.1063/5.0269836
  11. Khalaf, H. A., Mansour, S. E., & El-Madani, E. A. (2011). The influence of sulfate contents on the surface properties of sulfate-modified tin(IV) oxide catalysts. Journal of the Association of Arab Universities for Basic and Applied Sciences, 10(1), 15–20. https://doi.org/10.1016/j.jaubas.2011.06.003
  12. Khder, A. S., El-Sharkawy, E. A., El-Hakam, S. A., & Ahmed, A. I. (2008). Surface characterization and catalytic activity of sulfated tin oxide catalyst. Catalysis Communications, 9(5), 769–777. https://doi.org/10.1016/j.catcom.2007.08.022
  13. Knothe, G., & Dunn, R. O. (2009). A Comprehensive Evaluation of the Melting Points of Fatty Acids and Esters Determined by Differential Scanning Calorimetry. Journal of the American Oil Chemists’ Society, 86(9), 843–856. https://doi.org/10.1007/s11746-009-1423-2
  14. Lanjekar, R. D., & Deshmukh, D. (2016). A review of the effect of the composition of biodiesel on NOx emission, oxidative stability and cold flow properties. Renewable and Sustainable Energy Reviews, 54, 1401–1411. https://doi.org/10.1016/j.rser.2015.10.034
  15. László, T. (2023). Ambivalent changes in the correlation of energy consumption and economic growth in the member states of the European Union (2010–2019). Heliyon, 9(3), e14550. https://doi.org/10.1016/j.heliyon.2023.e14550
  16. Leng, L., Li, W., Li, H., Jiang, S., & Zhou, W. (2020). Cold Flow Properties of Biodiesel and the Improvement Methods: A Review. Energy & Fuels, 34(9), 10364–10383. https://doi.org/10.1021/acs.energyfuels.0c01912
  17. Liu, A., Zhu, M., & Dai, B. (2019). A novel high-performance SnO2 catalyst for oxidative desulfurization under mild conditions. Applied Catalysis A: General, 583, 117134. https://doi.org/10.1016/j.apcata.2019.117134
  18. Liu, W., Lu, G., Yang, G., & Bi, Y. (2019). Improving oxidative stability of biodiesel by cis-trans isomerization of carbon-carbon double bonds in unsaturated fatty acid methyl esters. Fuel, 242, 133–139. https://doi.org/10.1016/j.fuel.2018.12.132
  19. Lugito, G., Pamungkas, A. Y., Realdi, M. N. D., Alam, A. K., Egiyawati, C., Pradana, Y. S., Adhi, T. P., Soerawidjaja, T. H., Makertihartha, I. G. B. N., Mohtar, W. H. M. W., Kurnia, I., & Indarto, A. (2025). Biodiesel Stability Enhancement Through Catalytic Transfer Hydrogenation Using Glycerol as Hydrogen Donor. Eng, 6(5), 94. https://doi.org/10.3390/eng6050094
  20. M. Nambiraj, & K. Suresh Kumar. (2024). Exploring the role of natural antioxidant additives extracted from agro wastes in prolonging biodiesel’s storage stability. Industrial Crops and Products, 212, 118321. https://doi.org/10.1016/j.indcrop.2024.118321
  21. Maghrebi, R., Buffi, M., Bondioli, P., & Chiaramonti, D. (2021). Isomerization of long-chain fatty acids and long-chain hydrocarbons: A review. Renewable and Sustainable Energy Reviews, 149, 111264. https://doi.org/10.1016/j.rser.2021.111264
  22. Misra, P., Alvarez-Majmutov, A., & Chen, J. (2023). Isomerization catalysts and technologies for biorefining: Opportunities for producing sustainable aviation fuels. Fuel, 351, 128994. https://doi.org/10.1016/j.fuel.2023.128994
  23. Moser, B. R. (2009). Comparative oxidative stability of fatty acid alkyl esters by accelerated methods. JAOCS, Journal of the American Oil Chemists’ Society, 86(7), 699–706. https://doi.org/10.1007/s11746-009-1376-5
  24. OECD, & FAO. (2024a) OECD Agriculture Statistics (database). https://data-explorer.oecd.org/. Accessed on 6 January 2025
  25. OECD, & FAO. (2024b) OECD-FAO Agricultural Outlook 2024-2033. OECD Publishing, Paris and Rome. https://doi.org/10.1787/4c5d2cfb-en
  26. Pan, H., Xia, Q., Wang, Y., Shen, Z., Huang, H., Ge, Z., Li, X., He, J., Wang, X., Li, L., & Wang, Y. (2022). Recent advances in biodiesel production using functional carbon materials as acid/base catalysts. Fuel Processing Technology, 237, 107421. https://doi.org/10.1016/j.fuproc.2022.107421
  27. Pradana, Y. S., Azmi, F. A., Masruri, W., & Hartono, M. (2018). Biodiesel Production from Wet Spirulina sp. by One-Step Extraction-Transesterification. MATEC Web of Conferences, 156, 03009. https://doi.org/10.1051/matecconf/201815603009
  28. Pradana, Y. S., Dewi, R. N., Di Livia, K., Arisa, F., Rochmadi, Cahyono, R. B., & Budiman, A. (2020). Advancing biodiesel production from microalgae Spirulina sp. By a simultaneous extraction-transesterification process using palm oil as a co-solvent of methanol. Open Chemistry, 18(1), 833–842. https://doi.org/10.1515/chem-2020-0133
  29. Pradana, Y. S., Makertihartha, I. G. B. N., Indarto, A., & Prakoso, T. (2025). Biodiesel production from palm oil using potassium-loaded carbon as a heterogeneous catalyst: Kinetic study and process modification analysis. AIP Conference Proceedings, 3295, 040012. https://doi.org/10.1063/5.0272306
  30. Pradana, Y. S., Makertihartha, I. G. B. N., Indarto, A., Prakoso, T., & Soerawidjaja, T. H. (2024). A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application. Energies, 17(18), 4543. https://doi.org/10.3390/en17184543
  31. Pradana, Y. S., Makertihartha, I. G. B. N., Prakoso, T., Soerawidjaja, T. H., & Indarto, A. (2025). Biodiesel Isomerization Using Sulfated Tin(IV) Oxide as a Superacid Catalyst to Improve Cold Flow Properties. Technologies, 13(5), 203. https://doi.org/10.3390/technologies13050203
  32. Pradana, Y. S., Sadewo, B. R., Haryanto, S. A., & Sudibyo, H. (2021). Selection of oil extraction process from Chlorella species of microalgae by using multi-criteria decision analysis technique for biodiesel production. Open Chemistry, 19(1), 1029–1042. https://doi.org/10.1515/chem-2021-0092
  33. Prasakti, L., Pratama, S. H., Fauzi, A., Pradana, Y. S., & Budiman, A. (2020). Exergy analysis of conventional and hydrothermal liquefaction–esterification processes of microalgae for biodiesel production. Open Chemistry, 18(1), 874–881. https://doi.org/10.1515/chem-2020-0132
  34. Riyadi, T. W. B., Spraggon, M., Herawan, S. G., Idris, M., Paristiawan, P. A., Putra, N. R., R, M. F., Silambarasan, R., & Veza, I. (2023). Biodiesel for HCCI engine: Prospects and challenges of sustainability biodiesel for energy transition. Results in Engineering, 17, 100916. https://doi.org/10.1016/j.rineng.2023.100916
  35. Santos, S. M., Wolf-Maciel, M. R., & Fregolente, L. V. (2023). Cold flow properties: Applying exploratory analyses and assessing predictive methods for biodiesel and diesel-biodiesel blends. Sustainable Energy Technologies and Assessments, 57, 103220. https://doi.org/10.1016/j.seta.2023.103220
  36. Senra, M., McCartney, S. N., & Soh, L. (2019). The effect of bio-derived additives on fatty acid methyl esters for improved biodiesel cold flow properties. Fuel, 242, 719–727. https://doi.org/10.1016/j.fuel.2019.01.086
  37. Sia, C. B., Kansedo, J., Tan, Y. H., & Lee, K. T. (2020). Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review. Biocatalysis and Agricultural Biotechnology, 24, 101514. https://doi.org/10.1016/j.bcab.2020.101514
  38. Sierra-Cantor, J. F., & Guerrero-Fajardo, C. A. (2017). Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review. Renewable and Sustainable Energy Reviews, 72, 774–790. https://doi.org/10.1016/j.rser.2017.01.077
  39. Suzihaque, M. U. H., Alwi, H., Kalthum Ibrahim, U., Abdullah, S., & Haron, N. (2022). Biodiesel production from waste cooking oil: A brief review. Materials Today: Proceedings, 63, S490–S495. https://doi.org/10.1016/j.matpr.2022.04.527
  40. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
  41. Thushari, I., Babel, S., & Samart, C. (2019). Biodiesel production in an autoclave reactor using waste palm oil and coconut coir husk derived catalyst. Renewable Energy, 134, 125–134. https://doi.org/10.1016/j.renene.2018.11.030
  42. Vallinayagam, R., Vedharaj, S., Naser, N., Roberts, W. L., Dibble, R. W., & Sarathy, S. M. (2017). Terpineol as a novel octane booster for extending the knock limit of gasoline. Fuel, 187, 9–15. https://doi.org/10.1016/j.fuel.2016.09.034
  43. Varala, R., Narayana, V., Kulakarni, S. R., Khan, M., Alwarthan, A., & Adil, S. F. (2016). Sulfated tin oxide (STO) - Structural properties and application in catalysis: A review. Arabian Journal of Chemistry, 9(4), 550–573. https://doi.org/10.1016/j.arabjc.2016.02.015
  44. Wang, L., Wang, H., Fan, J., & Han, Z. (2023). Synthesis, catalysts and enhancement technologies of biodiesel from oil feedstock – A review. Science of The Total Environment, 904, 166982. https://doi.org/10.1016/j.scitotenv.2023.166982
  45. Wenxiang, F., Baosheng, D., Wei, W., Chenglin, Y., & Xueyuan, C. (2005). Manufacturing method of metastannic acid (tin dioxide) powder. China National Intellectual Property Administration, CN1657417A. https://patents.google.com/patent/CN1657417A/en
  46. Yu, K., Kumar, N., Aho, A., Roine, J., Heinmaa, I., Murzin, D. Y., & Ivaska, A. (2016). Determination of acid sites in porous aluminosilicate solid catalysts for aqueous phase reactions using potentiometric titration method. Journal of Catalysis, 335, 117–124. https://doi.org/10.1016/j.jcat.2015.12.010
  47. Yuarrina, W. P., Pradana, Y. S., Budiman, A., Majid, A. I., Indarto, & Suyono, E. A. (2018). Study of cultivation and growth rate kinetic for mixed cultures of local microalgae as third generation (G-3) bioethanol feedstock in thin layer photobioreactor. Journal of Physics: Conference Series, 1022, 012051. https://doi.org/10.1088/1742-6596/1022/1/012051
  48. Zhang, S., Zhang, Y., Tierney, J. W., & Wender, I. (2001). Anion-modified zirconia: effect of metal promotion and hydrogen reduction on hydroisomerization of n-hexadecane and Fischer-Tropsch waxes. Fuel Processing Technology, 69, 59–71. https://doi.org/10.1016/S0378-3820(00)00133-8
  49. Zhang, S., Zhang, Z., & Steichen, D. (2003). Skeletal Isomerization of Alkyl Esters and Derivatives Prepared Therefrom. Unites States Patent, US20030191330A1. https://patents.google.com/patent/US20030191330A1/en
  50. Zhang, X., Li, N., Wei, Z., Dai, B., & Han, S. (2022). Synthesis and evaluation of bifunctional polymeric agent for improving cold flow properties and oxidation stability of diesel-biodiesel blends. Renewable Energy, 196, 737–748. https://doi.org/10.1016/j.renene.2022.06.110

Last update:

No citation recorded.

Last update: 2026-02-08 04:56:18

No citation recorded.