skip to main content

Experimental investigation of inter-electrode distance and design in Cymbopogon citratus plant microbial fuel cells for sustainable energy production

1Département de Physique, Laboratorie sur l’Energie Solaire (LES), Université de Lomé, 01BP 1515, Togo

2Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME), Université de Lomé, 01BP 1515, Togo

3Département de Physique, Laboratoire de Physique des Matériaux et des Composants à Semi-conducteurs, Université de Lomé, 01BP 1515, Togo

Received: 2 Apr 2025; Revised: 16 Aug 2025; Accepted: 5 Sep 2025; Available online: 10 Sep 2025; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Plant Microbial Fuel Cells (PMFCs) are bioelectrochemical systems that harness plant rhizodeposition to generate electricity. This technology enables electrical energy to be produced while the plant grows. However, the major problem preventing the commercialization of these cells is their low power. In the present study, a systematic investigation was conducted to ascertain the optimal configuration of these cells, with the objective of determining the optimum inter-electrode distance. In the present stidy, the lemongrass  plant (Cymbopogon citratus) was used as the main substrate source, plastic pots and graphite electrodes, while examining three single pair of electrodes configurations (PMFC-A, PMFC-B, PMFC-C), along with a unique configuration with three unaligned cathodes (PMFC-D) and three inter-electrode distances (5cm, 7.5cm and 12.5cm) were examined. The experiment focused on determining electrical parameters, plant mass growth rates and soil characteristics. These variables were measured before and after the experiment. The results indicated that the plant mass growth rate of PMFC-D exhibited the greatest magnitude (80.62%). The organic matter (OM) content in the soil exhibited an increase in each PMFC over the course of the experiment. PMFC-B exhibited the highest values of OM, electrical conductivity, and water content, respectively equal to 15.69%, 376.00µS/cm, and 15.46%. Conversely, it exhibited the lowest pH value (7.37). Electrical parameter measurements have demonstrated that PMFCs with a single pair of electrodes exhibit superior performance in comparison to those with three unaligned cathodes. Similarly, these measurements indicated that for the single pair electrode configuration, an inter-electrode distance of 7.5cm was optimal, yielding a maximum power density of 127mW/m².  The determination of the average internal resistance, open circuit voltage, and power density (PD), along with their standard deviations, demonstrated that PMFC-B exhibited superior performance. Furthermore, an analysis of its autonomy revealed that the PDmin it delivers, even in the absence of sunlight, is 16.90 mW/m². From these results, PMFC-B is the best configuration for lemongrass PMFC.

Fulltext View|Download
Keywords: Plant Microbial fuel cells; electricity; configuration; inter-electrode distance; autonomy.
Funding: Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME)” of Universty of Lomé (Crédit IDA 6512-TG; Don IDA 536IDA).

Article Metrics:

  1. Apollon, W., Luna-Maldonado, A. I., Kamaraj, S.-K., Vidales-Contreras, J. A., Rodríguez-Fuentes, H., Gómez-Leyva, J. F., & Aranda-Ruíz, J. (2021). Progress and recent trends in photosynthetic assisted microbial fuel cells: A review. Biomass and Bioenergy, 148, 106028. https://doi.org/10.1016/j.biombioe.2021.106028
  2. Azri, Y. M., Tou, I., Sadi, M., & Benhabyles, L. (2018). Bioelectricity generation from three ornamental plants: Chlorophytum comosum, Chasmanthe floribunda and Papyrus diffusus. International Journal of Green Energy, 15(4), 254–263. https://doi.org/10.1080/15435075.2018.1432487
  3. Bard, A. J., & Mirkin, M. V. (Eds.). (2001). Scanning Electrochemical Microscopy (0 ed.). CRC Press. https://doi.org/10.1201/9780203910771
  4. Bataillou, G., Haddour, N., & Vollaire, C. (2022). Bioelectricity production of PMFC using Lobelia Queen Cardinalis in individual and shared soil configurations. E3S Web of Conferences, 334, 08001. https://doi.org/10.1051/e3sconf/202233408001
  5. Birol, D. F. (2022). International Energy Agency. World Energy Outlook 2022. www.iea.org
  6. Bombelli, P., Dennis, R. J., Felder, F., Cooper, M. B., Madras Rajaraman Iyer, D., Royles, J., Harrison, S. T., Smith, A. G., Harrison, C. J., & Howe, C. J. (2016). Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor. Royal Society open science. https://doi.org/10.17863/CAM.6429
  7. Chong, P. L., Chuah, J. H., Chow, C.-O., & Ng, P. K. (2025). Plant microbial fuel cells: A comprehensive review of influential factors, innovative configurations, diverse applications, persistent challenges, and promising prospects. International Journal of Green Energy, 22(3), 599–648. https://doi.org/10.1080/15435075.2024.2421325
  8. Conners, E. M., Rengasamy, K., & Bose, A. (2022). Electroactive biofilms : How microbial electron transfer enables bioelectrochemical applications. Journal of Industrial Microbiology and Biotechnology, 49(4), kuac012. https://doi.org/10.1093/jimb/kuac012
  9. Fernie, A. R., & Bauwe, H. (2020). Wasteful, essential, evolutionary stepping stone? The multiple personalities of the photorespiratory pathway. The Plant Journal, 102(4), 666–677. https://doi.org/10.1111/tpj.14669
  10. Hartman, L. M., Van Oppen, M. J. H., & Blackall, L. L. (2019). The Effect of Thermal Stress on the Bacterial Microbiome of Exaiptasia diaphana. Microorganisms, 8(1), 20. https://doi.org/10.3390/microorganisms8010020
  11. Hasan, Mohd. R., Anzar, N., Sharma, P., Malode, S. J., Shetti, N. P., Narang, J., & Kakarla, R. R. (2023). Converting biowaste into sustainable bioenergy through various processes. Bioresource Technology Reports, 23, 101542. https://doi.org/10.1016/j.biteb.2023.101542
  12. Helder, M., Chen, W., Van Der Harst, E. J. M., & Strik, D. P. B. T. B. (2013). Electricity production with living plants on a green roof: Environmental performance of the plant‐microbial fuel cell. Biofuels, Bioproducts and Biorefining, 7(1), 52–64. https://doi.org/10.1002/bbb.1373
  13. Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuhn, A. J., Blok, C., & Buisman, C. J. N. (2010). Concurrent bio-electricity and biomass production in three Plant-Microbial Fuel Cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresource Technology, 101(10), 3541–3547. https://doi.org/10.1016/j.biortech.2009.12.124
  14. Helder, M., Strik, D. P. B. T. B., Hamelers, H. V. M., Kuijken, R. C. P., & Buisman, C. J. N. (2012). New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell. Bioresource Technology, 104, 417–423. https://doi.org/10.1016/j.biortech.2011.11.005
  15. Helder, M., Strik, D. P., Hamelers, H. V., & Buisman, C. J. (2012). The flat-plate plant-microbial fuel cell: The effect of a new design on internal resistances. Biotechnology for Biofuels, 5(1), 70. https://doi.org/10.1186/1754-6834-5-70
  16. Hoang, A. T., Varbanov, P. S., Nižetić, S., Sirohi, R., Pandey, A., Luque, R., Ng, K. H., & Pham, V. V. (2022). Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. Journal of Cleaner Production, 359, 131897. https://doi.org/10.1016/j.jclepro.2022.131897
  17. Jiang, H., Liu, J., Huang, Q., & Yang, D. (2024). Effects of Short-Term Temperature Stress on Metabolic and Digestive Enzymes Activities of Procambarus clarkii. Israeli Journal of Aquaculture - Bamidgeh, 76(4). https://doi.org/10.46989/001c.126179
  18. Kabutey, F. T., Zhao, Q., Wei, L., Ding, J., Antwi, P., Quashie, F. K., & Wang, W. (2019). An overview of plant microbial fuel cells (PMFCs): Configurations and applications. Renewable and Sustainable Energy Reviews, 110, 402–414. https://doi.org/10.1016/j.rser.2019.05.016
  19. Kongnine, D. M., Kpelou, P., Attah, N., Kombate, S., Mouzou, E., Djeteli, G., & Napo, K. (2020). Energy Resource of Charcoals Derived from Some Tropical Fruits Nuts Shells. International Journal of Renewable Energy Development, 9(1), 29–35. https://doi.org/10.14710/ijred.9.1.29-35
  20. Kumar, M., & Jat, R. K. (2020). Lemongrass: A Valuable Crop for Soil Erosion Management. 2(11). Agriculture & Food: E-Newsletter. https://doi.org/10.1016/B978-0-12-816691-8.00014-5
  21. Liu, H., Cheng, S., Huang, L., & Logan, B. E. (2008). Scale-up of membrane-free single-chamber microbial fuel cells. Journal of Power Sources, 179(1), 274–279. https://doi.org/10.1016/j.jpowsour.2007.12.120
  22. Logan, B. E. (2007). Microbial Fuel Cells (1st ed.). Wiley. https://doi.org/10.1002/9780470258590
  23. Lozano, Y. M., Hortal, S., Armas, C., & Pugnaire, F. I. (2014). Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment. Soil Biology and Biochemistry, 78, 298–306. https://doi.org/10.1016/j.soilbio.2014.08.007
  24. Madondo, N. I., Rathilal, S., Bakare, B. F., & Tetteh, E. K. (2023). Effect of Electrode Spacing on the Performance of a Membrane-Less Microbial Fuel Cell with Magnetite as an Additive. Molecules, 28(6), 2853. https://doi.org/10.3390/molecules28062853
  25. Marschner’s Mineral Nutrition of Higher Plants. (2012). Elsevier. https://doi.org/10.1016/C2009-0-63043-9
  26. Oodally, A., Gulamhussein, M., & Randall, D. G. (2019). Investigating the performance of constructed wetland microbial fuel cells using three indigenous South African wetland plants. Journal of Water Process Engineering, 32, 100930. https://doi.org/10.1016/j.jwpe.2019.100930
  27. Pelesz, A., & Fojcik, M. (2024). Effect of high static electric field on germination and early stage of growth of Avena sativa and Raphanus sativus. Journal of Electrostatics, 130, 103939. https://doi.org/10.1016/j.elstat.2024.103939
  28. Regmi, R., & Nitisoravut, R. (2020). AZOLLA ENHANCES ELECTRICITY GENERATION OF PADDY MICROBIAL FUEL CELL. ASEAN Engineering Journal, 10(1), 55–63. https://doi.org/10.11113/aej.v10.15539
  29. Rezaei-Zarchi, S., Imani, S., Mehrjerdi, H. A., & Mohebbifar, M. R. (2012). The Effect of Electric Field on the Germination and Growth of Medicago Sativa Planet, as a native Iranian alfalfa seed. Acta Agriculturae Serbica
  30. Rusyn, I. (2021). Role of microbial community and plant species in performance of plant microbial fuel cells. Renewable and Sustainable Energy Reviews, 152, 111697. https://doi.org/10.1016/j.rser.2021.111697
  31. Saadi, M., Pézard, J., Haddour, N., Erouel, M., Vogel, T. M., & Khirouni, K. (2020). Stainless steel coated with carbon nanofiber/PDMS composite as anodes in microbial fuel cells. Materials Research Express, 7(2), 025504. https://doi.org/10.1088/2053-1591/ab6c99
  32. Schievano, A. (2017). Floating microbial fuel cells as energy harvesters for signal transmission from natural water bodies. Journal of Power Sources
  33. Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, 1‑26. https://doi.org/10.1155/2012/217037
  34. Simeon, M.I., Imoize, A. L., & Freitag, R. (2020). Evaluation of the electrical performance of a soil-type microbial fuel cell treated with a substrate at different electrode spacings. Proceedings of ICEESEN2020
  35. Simeon, M. I., & Freitag, R. (2022). Influence of electrode spacing and fed-batch operation on the maximum performance trend of a soil microbial fuel cell. International Journal of Hydrogen Energy, 47(24), 12304–12316. https://doi.org/10.1016/j.ijhydene.2021.11.110
  36. Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., & Watanabe, K. (2010). Factors Affecting Electric Output from Rice-Paddy Microbial Fuel Cells. Bioscience, Biotechnology, and Biochemistry, 74(6), 1271–1273. https://doi.org/10.1271/bbb.90852
  37. Tsukagoshi, S., & Shinohara, Y. (2020). Nutrition and nutrient uptake in soilless culture systems. In Plant Factory (p. 221‑229). Elsevier
  38. Wang, J., Song, X., Wang, Y., Bai, J., Li, M., Dong, G., Lin, F., Lv, Y., & Yan, D. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophytes. Science of The Total Environment, 607–608, 53–62. https://doi.org/10.1016/j.scitotenv.2017.06.243
  39. Watanabe, K., & Nishio, K. (2010). Electric Power from Rice Paddy Fields. In A. Ng (Ed.), Paths to Sustainable Energy. InTech. https://doi.org/10.5772/12929
  40. Wetser, K., Sudirjo, E., Buisman, C. J. N., & Strik, D. P. B. T. B. (2015). Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Applied Energy, 137, 151–157. https://doi.org/10.1016/j.apenergy.2014.10.006
  41. Widharyanti, I. D., Hendrawan, M. A., & Christwardana, M. (2021). Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production. International Journal of Renewable Energy Development, 10(1), 71–78. https://doi.org/10.14710/ijred.2021.32403
  42. Zingbe, E., Kongnine, D. M., Agbomahena, B. M., Kpelou, P., & Mouzou, E. (2025). Influence of Coconut Husk Biochar and Inter-Electrode Distance on the No-Load Voltage of the Cymbopogan citratus Microbial Plant Fuel Cell in a Pot. Electrochem, 6(1), 9. https://doi.org/10.3390/electrochem6010009

Last update:

No citation recorded.

Last update: 2025-10-05 22:06:13

No citation recorded.