skip to main content

Design and control of a hybrid water pumping system using energy management for sustainable agricultural irrigation: A case study of the Sidi Bouzid region in Tunisia

LATIS (Laboratory of advanced Technology and Intelligent Systems), National Engineering School of Sousse, University of Sousse, Sousse, 4002, Tunisia

Received: 30 Jul 2025; Revised: 17 Sep 2023; Accepted: 28 Sep 2025; Available online: 2 Oct 2025; Published: 1 Nov 2025.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

In this study, a renewable energy-powered Hybrid Water Pumping System (HWPS) is proposed for agricultural irrigation, designed to operate without reliance on battery storage. The system is adapted to the local climatic characteristics of the Sidi Bouzid region in Tunisia and is intended to regulate and coordinate water flow to effectively meet crop irrigation requirements. Hence, the system comprises three principal subsystems: A Wind Turbine (WT) driving a Doubly-Fed Induction Generator (DFIG) connected to the grid via rotor-side and grid-side converters; a Photovoltaic (PV) module integrated via a DC/DC boost converter; and a water pumping unit, consisting of an Induction Machine (IM) coupled to a centrifugal pump. The mathematical models of each subsystem were developed, and a control algorithms suite was implemented to enhance overall performance and energy efficiency. Maximum Power Point Tracking (MPPT) techniques were employed to optimize the energy harvested from renewable sources. A non-linear Sliding Mode Control (SMC) strategy was implemented to manage the DFIG power output, while Input-Output Feedback Linearization (IOFL) was applied to control the IM via a Voltage Source Inverter (VSI).Since the system operates without battery storage, a dynamic Energy Management System (EMS) is investigated to ensure optimal energy distribution, prioritizing solar energy during peak sunlight hours and transitioning to wind energy when solar availability declines. Simulation results validate the system’s effectiveness and demonstrate its potential for sustainable agricultural applications in rural areas. This approach offers a cost-effective and environmentally friendly sustainable solution for irrigation, contributing to improving water and energy security.

Fulltext View|Download
Keywords: Renewable energy;Sustainable agriculture; Hybrid water pumping system; Nonlinear controls; Motor drive; Energy management system.

Article Metrics:

  1. Al-Ghussain, L., Ahmed, H., & Haneef, F. (2018). Optimization of hybrid PV–wind system: Case study Al-Tafilah cement factory, Jordan. Sustainable Energy Technologies and Assessments, 30, 24–36. https://doi.org/10.1016/j.seta.2018.08.008
  2. Alami, H. E., Bossoufi, B., Motahhir, S., Alkhammash, E. H., Masud, M., Karim, M., Taoussi, M., Bouderbala, M., Lamnadi, M., & El Mahfoud, M. (2022). FPGA in the loop implementation for observer sliding mode control of DFIG-generators for wind turbines. Electronics, 11(1), 116. https://doi.org/10.3390/electronics11010116
  3. Amri, A., Moussa, I., & Khedher, A. (2025). Design and analysis of a photovoltaic water pumping system for sustainable agricultural irrigation. In Proceedings of the 2025 IEEE 22nd International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, Tunisia. IEEE. https://doi.org/10.1109/SSD64182.2025.10989905
  4. Al-Falahat, A. M., Al-Nimr, M., Al-Mashaqbeh, I. A., Al-Dmour, N. A., & Al-Salaymeh, A. (2022). Energy performance and economics assessments of a photovoltaic-heat pump system. Results in Engineering, 13, 100324. https://doi.org/10.1016/j.rineng.2021.100324
  5. Abdellahi, B., Mohamed Mahmoud, M. E. M., Dah, N. O., Diakité, A., El Hassen, A., & Ehssein, C. (2019). Monitoring the performance of a maximum power point tracking photovoltaic (MPPT PV) pumping system driven by a brushless direct current (BLDC) motor. International Journal of Renewable Energy Development, 8(2), 193–201. https://doi.org/10.14710/ijred.8.2.193-201
  6. Assimacopoulos, D., Sebos, I., Chioti, D., & Katsiardi, P. (2025). Advancing climate change adaptation in Greece: Development and implementation of a national monitoring and evaluation system. Euro-Mediterranean Journal for Environmental Integration. https://doi.org/10.1007/s41207-025-00844-9
  7. Ahmed, M. M., Bawayan, H. M., Enany, M. A., Elymany, M. M., & Shaier, A. A. (2025). Modern advancements of energy storage systems integrated with hybrid renewable energy sources for water pumping application. Engineering Science and Technology, an International Journal, 62, 101967. https://doi.org/10.1016/j.jestch.2025.101967
  8. Barrueto Guzmán, A., Barraza Vicencio, R., Ardila-Rey, J. A., Núñez Ahumada, E., González Araya, A., & Arancibia Moreno, G. (2018). A cost-effective methodology for sizing solar PV systems for existing irrigation facilities in Chile. Energies, 11(7), 1853. https://doi.org/10.3390/en11071853
  9. Bozoudis, V., & Sebos, I. (2021). The carbon footprint of transport activities of the 401 Military General Hospital of Athens. Environmental Modeling & Assessment, 26(2), 155–162. https://doi.org/10.1007/s10666-020-09701-1
  10. Btissam, M., Douae, A., Yasmine, I., El B, C., Karim, M., & Bossoufi, B. (2021). Improvement of sliding mode power control applied to wind system based on doubly-fed induction generator. International Journal of Power Electronics and Drive Systems (IJPEDS), 12(1), 441–452. https://doi.org/10.11591/ijpeds.v12.i1.pp441-452
  11. Campana, P. E., Li, H., & Yan, J. (2015). Techno-economic feasibility of the irrigation system for the grassland and farmland conservation in China: Photovoltaic vs. wind power water pumping. Energy Conversion and Management, 103, 311–320. https://doi.org/10.1016/j.enconman.2015.06.034
  12. Calderon, J., Cureg, J., Diaz, M., Guzman, J., Rudd, C., & Le, H. T. (2019). Smart agriculture: An off-grid renewable energy system for farms using wind power and energy storage. In Proceedings of the 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (pp. 1–5). Washington, DC, USA. https://doi.org/10.1109/ISGT.2019.8791576
  13. Cervera-Gascó, J., Montero, J., del Castillo, A., Tarjuelo, J. M., & Moreno, M. A. (2020). EVASOR, an integrated model to manage complex irrigation systems energized by photovoltaic generators. Agronomy, 10(3), 331. https://doi.org/10.3390/agronomy10030331
  14. Chatterjee, A., & Ghosh, S. (2020). PV based isolated irrigation system with its smart IoT control in remote Indian area. In Proceedings of the 2020 International Conference on Computer, Electrical & Communication Engineering (ICCECE) (pp. 1–5). Kolkata, India. https://doi.org/10.1109/ICCECE48148.2020.9223110
  15. Chojaa, H., Derouich, A., Chehaidia, S., Zamzoum, O., & Elouatouat, M. (2021). Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Reports, 7, 4809–4824. https://doi.org/10.1016/j.egyr.2021.07.066
  16. Chhipą, A. A., Chakrabarti, P., Bolshev, V., Chakrabarti, T., Samarin, G., Vasilyev, A. N., Ghosh, S., & Kudryavtsev, A. (2022). Modeling and control strategy of wind energy conversion system with grid-connected doubly-fed induction generator. Energies, 15(16), 6694. https://doi.org/10.3390/en15186694
  17. Desta, M. A., Tibba, G. S., Issa, M. M., & Heyi, W. (2023). Performance and cost comparison of photovoltaic and diesel pumping systems in Central Rift Valley of Ethiopia. Turkish Journal of Agricultural Engineering Research, 4(1), 73–90. https://doi.org/10.46592/turkager.1272864
  18. Echiheb, F., Majout, B., El Kafazi, I., Bossoufi, B., Rabhi, A., Bizon, N., Zhilenkov, A., & Mobayen, S. (2025). Experimental evaluation of an advanced predictive control technique for variable-speed wind turbine systems. International Journal of Electrical Power & Energy Systems. https://doi.org/10.1016/j.ijepes.2025.110668
  19. Elkholy, M. M., & Fathy, A. (2016). Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network. Solar Energy, 139, 199–212. https://doi.org/10.1016/j.solener.2016.09.022
  20. Ferrarese, G., Pagano, A., Troiani, D., Ceni, A., Hutomo, A. I., Fontana, N., Marini, G., Mambretti, S., & Malavasi, S. (2024). Rethinking on-demand irrigation systems using IoT stand-alone technologies. Engineering Proceedings, 69, 77. https://doi.org/10.3390/engproc2024069077
  21. Gabrovska-Evstatieva, K., Evstatiev, B., Trifonov, D., & Mihailov, N. (2019). Autonomous powering of an orchard irrigation system and fruit storage. In Proceedings of the 47th International Symposium, Actual Tasks on Agricultural Engineering (pp. 203–211). Opatija, Croatia
  22. IPCC. (2021). Sixth assessment report – Working group 1: The physical science basis. https://www.ipcc.ch/report/ar6/wg1/
  23. IRENA. (2020). Renewable capacity statistics 2020. Abu Dhabi. https://www.mitigationmomentum.org/downloads/NAMA-proposal-for-renewable-energy-and-energy-efficiency-in-the-building-sector-in-Tunisia-December%202015.pdf
  24. Kumar, S. (2020). Solar PV powered water pumping system using DC motor drive: A critical review. International Journal of Trend in Research and Science, 5(4), 1–8. https://doi.org/10.30780/IJTRS.V05.I04.001
  25. Li, P., Zhang, J., Xu, R., Zhou, J., & Gao, Z. (2024). Integration of MPPT algorithms with spacecraft applications: Review, classification and future development outlook. Energy. https://doi.org/10.1016/j.energy.2024.132927
  26. Li, P., Xiong, L., Wu, F., Ma, M., & Wang, J. (2019). Sliding mode controller based on feedback linearization for damping of sub-synchronous control interaction in DFIG-based wind power plants. International Journal of Electrical Power & Energy Systems, 107, 239–250. https://doi.org/10.1016/j.ijepes.2018.11.020
  27. Mazzeo, D., Matera, N., De Luca, P., Baglivo, C., Congedo, P. M., & Oliveti, G. (2021). A literature review and statistical analysis of photovoltaic-wind hybrid renewable system research by considering the most relevant 550 articles: An upgradable matrix literature database. Journal of Cleaner Production, 295, 126070. https://doi.org/10.1016/j.jclepro.2021.126070
  28. Monís, J. I., López-Luque, R., Reca, J., & Martínez, J. (2020). Multistage bounded evolutionary algorithm to optimize the design of sustainable photovoltaic (PV) pumping irrigation systems with storage. Sustainability, 12(3), 1026. https://doi.org/10.3390/su12031026
  29. Mishra, R. N., & Mohanty, K. B. (2017). Implementation of feedback-linearization-modelled induction motor drive through an adaptive simplified neuro-fuzzy approach. Sādhanā, 42(12), 2113–2135. https://doi.org/10.1007/s12046-017-0741-6
  30. National Agency for Energy Conservation. (n.d.). ANME – National Agency for Energy Conservation, from https://www.anme.tn/
  31. Nydrioti, I., Sebos, I., Kitsara, G., & Assimacopoulos, D. (2024). Effective management of urban water resources under various climate scenarios in semiarid Mediterranean areas. Scientific Reports, 14(1), 28666. https://doi.org/10.1038/s41598-024-79938-3
  32. Powell, J. W., Welsh, J. M., Pannell, D., & Kingwell, R. (2019). Can applying renewable energy for Australian sugarcane irrigation reduce energy cost and environmental impacts? A case study approach. Journal of Cleaner Production, 240, 118177. https://doi.org/10.1016/j.jclepro.2019.118177
  33. Poompavai, T., & Kowsalya, M. (2019). Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review. Renewable and Sustainable Energy Reviews, 107, 108–122. https://doi.org/10.1016/j.rser.2019.02.023
  34. Qin, J., Duan, W., Zou, S., Chen, Y., Huang, W., & Rosa, L. (2024). Global energy use and carbon emissions from irrigated agriculture. Nature Communications, 15, 3084. https://doi.org/10.1038/s41467-024-47383-5
  35. Renewable Energy Solutions for the Mediterranean. (2016). Country profiles: Tunisia. Retrieved September 26, 2025, from https://www.res4med.org/wp-content/uploads/2017/11/Country-Profile-Tunisia-Report_05.12.2016.pdf
  36. Rehman, S., & Sahin, A. Z. (2012). Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A technoeconomical review. Renewable and Sustainable Energy Reviews, 16(6), 4470–4478. https://doi.org/10.1016/j.rser.2012.04.036
  37. Ronad, B. F., & Jangamshetti, S. H. (2015). Optimal cost analysis of wind-solar hybrid system powered AC and DC irrigation pumps using HOMER. In Proceedings of the 2015 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1038–1042). Palermo, Italy
  38. Saady, I., Karim, M., Bossoufi, B., Ouanjli, N., Motahhir, S., & Majout, B. (2023). Optimization and control of photovoltaic water pumping system using Kalman filter based MPPT and multilevel inverter fed DTC-IM. Results in Engineering, 17, 100829. https://doi.org/10.1016/j.rineng.2022.100829
  39. Saady, I. I., Karim, M., Bossoufi, B., Motahhir, S., Adouairi, M. S., Majout, B., Lamnadi, M., Masud, M., & Al-Amri, J. F. (2021). Optimization for a photovoltaic pumping system using indirect field oriented control of induction motor. Electronics, 10(24), 3076. https://doi.org/10.3390/electronics10243076
  40. Saady, I., Karim, M., Bossoufi, B., Motahhir, S., Adouairi, M. S., Majout, B., Lamnadi, M., Masud, M., & Al-Amri, J. F. (2021). Optimization for a photovoltaic pumping system using indirect field oriented control of induction motor. Electronics, 10(24), 3076. https://doi.org/10.3390/electronics10243076
  41. Saputra, M., Syuhada, A., & Sary, R. (2018). Study of solar and wind energy using as water pump drive-land for agricultural irrigation. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST) (pp. 1–4). Yogyakarta, Indonesia
  42. Sharma, V., Hossain, M. J., Ali, S. M. N., & Kashif, M. (2020). A photovoltaic-fed Z-source inverter motor drive with fault-tolerant capability for rural irrigation. Energies, 13(18), 4630. https://doi.org/10.3390/en13184630
  43. Shinde, V. B., & Wandre, S. S. (2015). Solar photovoltaic water pumping system for irrigation: A review. African Journal of Agricultural Research, 10(20), 2267–2273. https://doi.org/10.5897/AJAR2015.9879
  44. Stoyanov, L., Bachev, I., Zarkov, Z., Lazarov, V., & Notton, G. (2021). Multivariate analysis of a wind–PV-based water pumping hybrid system for irrigation purposes. Energies, 14(11), 3231. https://doi.org/10.3390/en14113231
  45. Swan, L. G., & Allen, P. L. (2010). Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system. Renewable Energy, 35(9), 2015–2026. https://doi.org/10.1016/j.renene.2010.02.002
  46. Tampakis, S., Arabatzis, G., Tsantopoulos, G., & Rerras, I. (2017). Citizens' views on electricity use, savings and production from renewable energy sources: A case study from a Greek island. Renewable and Sustainable Energy Reviews, 79, 39–49. https://doi.org/10.1016/j.rser.2017.05.036
  47. Tsepi, E., Sebos, I., & Kyriakopoulos, G. L. (2024). Decomposition analysis of CO₂ emissions in Greece from 1996 to 2020. Strategic Planning for Energy & the Environment, 43(3), 517–544. https://doi.org/10.13052/spee1048-5236.4332
  48. Udegbe, S., Agupugo, O., Oyeniran, A., & Iyede, E. (2023). Environmental impact of modern agricultural practices: Strategies for reducing carbon footprint and promoting conservation. International Journal of Management & Entrepreneurship Research, 4(1), 73–90. https://www.fepbl.com/index.php/ijmer/article/view/1581
  49. Vick, B. D., & Neal, B. A. (2012). Analysis of off-grid hybrid wind turbine/solar PV water pumping systems. Solar Energy, 86(5), 1197–1207. https://doi.org/10.1016/j.solener.2012.01.012
  50. Wong, K. H., Chong, W. T., Poh, S. C., Shiah, Y.-C., Sukiman, N. L., & Wang, C.-T. (2018). 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renewable Energy, 129, 32–55. https://doi.org/10.1016/j.renene.2018.05.085
  51. Xiang, C., Liu, J., Yu, Y., Shao, W., Mei, C., & Xia, L. (2017). Feasibility assessment of renewable energies for cassava irrigation in China. Energy Procedia, 142, 17–22. https://doi.org/10.1016/j.egypro.2017.12.004
  52. Zafeiriou, E., Spinthiropoulos, K., Tsanaktsidis, C., Garefalakis, S., Panitsidis, K., Garefalakis, A., & Arabatzis, G. (2022). Energy and mineral resources exploitation in the delignitization era: The case of Greek peripheries. Energies, 15(13), 4732. https://doi.org/10.3390/en15134732
  53. Zhang, T., Stackhouse, P. W., Macpherson, B., & Mikovitz, J. C. (2024). A CERES-based dataset of hourly DNI, DHI and global tilted irradiance (GTI) on equatorward tilted surfaces: Derivation and comparison with the ground-based BSRN data. Solar Energy, 274, 112538. https://doi.org/10.1016/j.solener.2024.112538

Last update:

No citation recorded.

Last update: 2025-10-05 07:28:40

No citation recorded.