skip to main content

Optimization of sugarcane straw as a solid biofuel for thermochemical processes by water leaching pretreatment

Department of Engineering, Pontifical Catholic University of Peru, Lima, Peru

Received: 2 Jul 2025; Revised: 29 Sep 2025; Accepted: 10 Oct 2025; Available online: 12 Oct 2025; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Sugarcane straw, an abundant agricultural waste, has considerable potential as a renewable fuel due to its energy content, sustained generation, and CO2 neutrality but its direct utilization is limited by its high levels of ash, alkalis, S, Cl contents that cause severe slagging, fouling, and corrosion in boilers, as well as the harmful emissions released during combustion. To improve the fuel properties of sugarcane straw, a leaching pretreatment with distilled water was developed and applied to the residue under controlled conditions to evaluate the effects of water temperature, residence time and agitation of the leachate on the removal effectiveness of soluble ash-forming components. The leaching process was carried out in batches, maintaining a solid-to-liquid ratio of 1:30, and a feedstock size of 0.5–2 cm. Various combinations of temperature, residence time, and leachate agitation condition were tested to optimize the process. The optimal condition was established at 80 °C and 20 min with continuous agitation, which was applied to the residue, achieving reductions of 38.46% in ash, 78.26 in Cl, 57.14% in S, 9.09% in N, 54.61% in K2O, and 58.22% in Na2O, along with an increase in the high heating value, which reached 18.4 MJ/kg. These improvements reduce slagging, fouling and corrosion tendency, as indicated by lower predictive indices and higher ash fusion temperature reflected in the ternary phase diagram, and enhanced energy content. The improvements achieved make the washed sugarcane straw suitable for industrial biofuel applications, reducing issues associated with ash and emissions and providing higher energy content. The water leaching pretreatment also represents a valuable contribution since it can be easily replicated, and the upgraded residue has been valorized by being converted into a clean and sustainable fuel.

Fulltext View|Download
Keywords: biomass ash; fouling; slagging; sugarcane straw; water leaching

Article Metrics:

  1. Abelha, P., Mourão Vilela, C., Nanou, P., Carbo, M., Janssen, A., & Leiser, S. (2019). Combustion improvements of upgraded biomass by washing and torrefaction. Fuel, 253(September 2018), 1018–1033. https://doi.org/10.1016/j.fuel.2019.05.050
  2. Aguiar, A., Milessi, T. S., Mulinari, D. R., Lopes, M. S., da Costa, S. M., & Candido, R. G. (2021). Sugarcane straw as a potential second generation feedstock for biorefinery and white biotechnology applications. Biomass and Bioenergy, 144(105896). https://doi.org/10.1016/j.biombioe.2020.105896
  3. Alao, K. T., Gilani, S. I. U. H., Sopian, K., Alao, T. O., Oyebamiji, D. S., & Oladosu, T. L. (2024). Biomass and organic waste conversion for sustainable bioenergy: A comprehensive bibliometric analysis of current research trends and future directions. International Journal of Renewable Energy Development, 13(4), 750–782. https://doi.org/10.61435/ijred.2024.60149
  4. Chandrasiri, Y. S., Weerasinghe, W. M. L. I., Madusanka, D. A. T., & Manage, P. M. (2022). Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis. International Journal of Renewable Energy Development, 11(1), 275–285. https://doi.org/10.14710/ijred.2022.41774
  5. Deb, U., Bhuyan, N., Bhattacharya, S. S., & Kataki, R. (2019). Characterization of agro-waste and weed biomass to assess their potential for bioenergy production. International Journal of Renewable Energy Development, 8(3), 243–251. https://doi.org/10.14710/ijred.8.3.243-251
  6. Deng, L., Zhang, T., & Che, D. (2013). Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. Fuel Processing Technology, 106(2013), 712–720. https://doi.org/10.1016/j.fuproc.2012.10.006
  7. Dethan, J. J. S., Bale-Therik, J. F., Lalel, H. J. D., & Telupere, F. M. S. (2024). Optimisation of Particle Size of Torrefied Kesambi Leaf and Binder Ratio on the Quality of Biobriquettes. Journal of Sustainable Development of Energy, Water and Environment Systems, 12(1), 1–21. https://doi.org/10.13044/J.SDEWES.D12.0490
  8. Fernández, M. J., Chaloupková, V., & Barro, R. (2022). Water leaching of herbaceous biomass bales to reduce sintering and corrosion. Fuel, 312(122744). https://doi.org/10.1016/j.fuel.2021.122744
  9. Food and Agricultural Organization (FAO). (2023). World Food and Agriculture – Statistical Yearbook 2023. In World Food and Agriculture – Statistical Yearbook 2023. https://doi.org/10.4060/cc8165en
  10. Gajera, B., Datta, A., Gakkhar, N., & Sarma, A. K. (2023). Torrefied Mustard Straw as a Potential Solid Biofuel: a Study with Physicochemical Characterization and Thermogravimetric and Emission Analysis. Bioenergy Research, 16(4), 2371–2385. https://doi.org/10.1007/s12155-023-10600-y
  11. Garcia-Maraver, A., Mata-Sanchez, J., Carpio, M., & Perez-Jimenez, J. A. (2017). Critical review of predictive coefficients for biomass ash deposition tendency. Journal of the Energy Institute, 90(2), 214–228. https://doi.org/10.1016/j.joei.2016.02.002
  12. García, R., Pizarro, C., Álvarez, A., Lavín, A. G., & Bueno, J. L. (2015). Study of biomass combustion wastes. Fuel, 148, 152–159. https://doi.org/10.1016/j.fuel.2015.01.079
  13. Ge, Z., Cao, X., Zha, Z., Ma, Y., Zeng, M., Wu, Y., Li, F., & Zhang, H. (2022). The sintering analysis of biomass waste ash based on the in-situ exploration and thermal chemical calculation in the gasification process. Combustion and Flame, 245, 112381. https://doi.org/10.1016/j.combustflame.2022.112381
  14. Gopalakrishnan, N. K., Balasubramanian, B., Meyyazhagan, A., Chaudhary, A., Palani, V., Kamyab, H., & Pappuswamy, M. (2025). Exploring the efficiency and scalability of using algae as a biomass feedstock for biofuel production. Algal Research, 90(August), 1–8. https://doi.org/10.1016/j.algal.2025.104251
  15. Gudka, B., Jones, J. M., Lea-Langton, A. R., Williams, A., & Saddawi, A. (2016). A review of the mitigation of deposition and emission problems during biomass combustion through washing pre-treatment. Journal of the Energy Institute, 89(2), 159–171. https://doi.org/10.1016/j.joei.2015.02.007
  16. Hansen, L. J., Fendt, S., & Spliethoff, H. (2022). Impact of hydrothermal carbonization on combustion properties of residual biomass. Biomass Conversion and Biorefinery, 12(7), 2541–2552. https://doi.org/10.1007/s13399-020-00777-z
  17. Ibitoye, S. E., Mahamood, R. M., Jen, T. C., & Akinlabi, E. T. (2022). Combustion, Physical, and Mechanical Characterization of Composites Fuel Briquettes from Carbonized Banana Stalk and Corncob. International Journal of Renewable Energy Development, 11(2), 435–447. https://doi.org/10.14710/ijred.2022.41290
  18. Javanmard, A., Daud, W. M. A. W., Patah, M. F. A., & Ying, C. Y. (2025). Impact of water-washing pretreatment on key properties of torrefied palm kernel shells: A statistical optimization study. Industrial Crops and Products, 228(June), 1–6. https://doi.org/10.1016/j.indcrop.2025.120729
  19. Kalak, T. (2023). Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies, 16(4). https://doi.org/10.3390/en16041783
  20. Karaeva, A., Magaril, E., & Al-Kayiem, H. H. (2023). Review and Comparative Analysis of Renewable Energy Policies in the European Union, Russia and the United States. International Journal of Energy Production and Management, 8(1), 11–19. https://doi.org/10.18280/ijepm.080102
  21. Kayesh, M. S., & Siddiqa, A. (2023). The Impact of Renewable Energy Consumption on Economic Growth in Bangladesh: Evidence from ARDL and VECM Analyses. International Journal of Energy Production and Management, 8(3), 149–160. https://doi.org/10.18280/ijepm.080303
  22. Kongto, P., Palamanit, A., Ninduangdee, P., Singh, Y., Chanakaewsomboon, I., Hayat, A., & Wae-hayee, M. (2022). Intensive exploration of the fuel characteristics of biomass and biochar from oil palm trunk and oil palm fronds for supporting increasing demand of solid biofuels in Thailand. Energy Reports, 8(November), 5640–5652. https://doi.org/10.1016/j.egyr.2022.04.033
  23. Lachman, J., Baláš, M., Lisý, M., Lisá, H., Milčák, P., & Elbl, P. (2021). An overview of slagging and fouling indicators and their applicability to biomass fuels. Fuel Processing Technology, 217(106804). https://doi.org/10.1016/j.fuproc.2021.106804
  24. Latif, M., Brammer, J. G., & Morris, J. (2025). Evaluation of Different Classes of Additives on Ash Melting Characteristics of Garden Grass Waste. Waste and Biomass Valorization, 0123456789. https://doi.org/10.1007/s12649-025-02991-0
  25. Lebendig, F., Funcia, I., Pérez-Vega, R., & Müller, M. (2022). Investigations on the Effect of Pre-Treatment of Wheat Straw on Ash-Related Issues in Chemical Looping Gasification (CLG) in Comparison with Woody Biomass. Energies, 15(9). https://doi.org/10.3390/en15093422
  26. Liu, Y. J., Yan, T. G., An, Y., Zhang, W., & Dong, Y. (2021). Influence of water leaching on alkali-induced slagging properties of biomass straw. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 49(12), 1839–1850. https://doi.org/10.1016/S1872-5813(21)60147-0
  27. Ovčačíková, H., Velička, M., Vlček, J., Topinková, M., Klárová, M., & Burda, J. (2022). Corrosive Effect of Wood Ash Produced by Biomass Combustion on Refractory Materials in a Binary Al–Si System. Materials, 15(16). https://doi.org/10.3390/ma15165796
  28. Ozgen, S., Cernuschi, S., & Caserini, S. (2021). An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renewable and Sustainable Energy Reviews, 135(December 2019), 110113. https://doi.org/10.1016/j.rser.2020.110113
  29. Peiris, M. A., & Gunarathne, D. S. (2021). Parametric and kinetic study of washing pretreatment for K and Cl removal from rice husk. Heliyon, 7(11), e08398. https://doi.org/10.1016/j.heliyon.2021.e08398
  30. Pestaño, L. D. B., & Jose, W. I. (2016). Production of solid fuel by torrefaction using coconut leaves as renewable biomass. International Journal of Renewable Energy Development, 5(3), 187–197. https://doi.org/10.14710/ijred.5.3.187-197
  31. Putra, H. P., Kuswa, F. M., Ghazidin, H., Darmawan, A., Prabowo, & Hariana. (2023). Slagging-fouling evaluation of empty fruit bunch and palm oil frond mixture with bituminous ash coal as co-firing fuel. Bioresource Technology Reports, 22(April), 101489. https://doi.org/10.1016/j.biteb.2023.101489
  32. Qian, X., Xue, J., Yang, Y., & Lee, S. W. (2021). Thermal properties and combustion‐related problems prediction of agricultural crop residues. Energies, 14(15). https://doi.org/10.3390/en14154619
  33. Rimantho, D., Hidayah, N. Y., & Pratomo, V. A. (2023). Performance Evaluation of Wood Pellets Derived from Biomass Waste as a Sustainable Energy Source. International Journal of Energy Production and Management, 8(4), 251–258. https://doi.org/10.18280/ijepm.080407
  34. Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., & Tassinari, P. (2021). Turning agricultural wastes into biomaterials: Assessing the sustainability of scenarios of circular valorization of corn cob in a life-cycle perspective. Applied Sciences (Switzerland), 11(14). https://doi.org/10.3390/app11146281
  35. Shahbeik, H., Kazemi Shariat Panahi, H., Dehhaghi, M., Guillemin, G. J., Fallahi, A., Hosseinzadeh-Bandbafha, H., Amiri, H., Rehan, M., Raikwar, D., Latine, H., Pandalone, B., Khoshnevisan, B., Sonne, C., Vaccaro, L., Nizami, A. S., Gupta, V. K., Lam, S. S., Pan, J., Luque, R., … Aghbashlo, M. (2024). Biomass to biofuels using hydrothermal liquefaction: A comprehensive review. Renewable and Sustainable Energy Reviews, 189(PB), 113976. https://doi.org/10.1016/j.rser.2023.113976
  36. Singhal, A., Konttinen, J., & Joronen, T. (2021a). Effect of different washing parameters on the fuel properties and elemental composition of wheat straw in water-washing pre-treatment. Part 1: Effect of washing duration and biomass size. Fuel, 292(120206). https://doi.org/10.1016/j.fuel.2021.120206
  37. Singhal, A., Konttinen, J., & Joronen, T. (2021b). Effect of different washing parameters on the fuel properties and elemental composition of wheat straw in water-washing pre-treatment. Part 2: Effect of washing temperature and solid-to-liquid ratio. Fuel, 292(January). https://doi.org/10.1016/j.fuel.2021.120209
  38. Smith, A. M., & Ross, A. B. (2019). The influence of residence time during hydrothermal carbonisation of miscanthus on bio-coal combustion chemistry. Energies, 12(3), 13–22. https://doi.org/10.3390/en12030523
  39. Sommersacher, P., Brunner, T., & Obernberger, I. (2012). Fuel Indexes : A Novel Method for the Evaluation of Relevant Combustion Properties of New Biomass Fuels. Energy Fuels, 26(1), 380–390. https://doi.org/https://doi.org/10.1021/ef201282y
  40. Toscano, G., De Francesco, C., Gasperini, T., Fabrizi, S., Duca, D., & Ilari, A. (2023). Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels. Resources, 12(6). https://doi.org/10.3390/resources12060069
  41. Tsai, C. H., Shen, Y. H., & Tsai, W. T. (2023). Thermochemical Characterization of Rice-Derived Residues for Fuel Use and Its Potential for Slagging Tendency. Fire, 6(6), 1–10. https://doi.org/10.3390/fire6060230
  42. Vassilev, S. V., Baxter, D., & Vassileva, C. G. (2014). An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel, 117(PART A), 152–183. https://doi.org/10.1016/j.fuel.2013.09.024
  43. Vassilev, S. V., Vassileva, C. G., & Vassilev, V. S. (2015). Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel, 158, 330–350. https://doi.org/10.1016/j.fuel.2015.05.050
  44. Vlček, J., Ovčačíková, H., Velička, M., Topinková, M., Burda, J., & Matějková, P. (2023). The Corrosion Effect of Fly Ash from Biomass Combustion on Andalusite Refractory Materials. Minerals, 13(3), 357. https://doi.org/10.3390/min13030357
  45. Wang, K., & Tester, J. W. (2023). Sustainable management of unavoidable biomass wastes. Green Energy and Resources, 1(1), 100005. https://doi.org/10.1016/j.gerr.2023.100005
  46. Wang, Y., & Wu, J. J. (2023). Thermochemical conversion of biomass: Potential future prospects. Renewable and Sustainable Energy Reviews, 187(January), 113754. https://doi.org/10.1016/j.rser.2023.113754
  47. Wu, S., Chen, J., Peng, D., Wu, Z., Li, Q., & Huang, T. (2019). Effects of water leaching on the ash sintering problems of wheat straw. Energies, 12(3). https://doi.org/10.3390/en12030387
  48. Yu, C., Thy, P., Wang, L., Anderson, S. N., Vandergheynst, J. S., Upadhyaya, S. K., & Jenkins, B. M. (2014). Influence of leaching pretreatment on fuel properties of biomass. Fuel Processing Technology, 128, 43–53. https://doi.org/10.1016/j.fuproc.2014.06.030
  49. Zlateva, P., Yordanov, K., Murzova, M., & Terziev, A. (2025). Consumer preferences for solid biomass fuels for energy purposes. International Journal of Renewable Energy Development, 14(1), 52–61. https://doi.org/10.61435/ijred.2025.60473

Last update:

No citation recorded.

Last update: 2025-10-22 08:37:43

No citation recorded.