skip to main content

Structural, Morphological and Optical Properties of ZnO Thin Films Grown by Time-dependent Chemical Bath Deposition

1Laboratory on Solar Energy, Department of Physics, Faculty of Sciences, University of Lomé, 01BP 1515, Lomé, Togo, Togo

2Regional Center of Excellence for Electricity Management (CERME), University of Lomé, 01BP 1515, Lomé, Togo, Togo

3Physics of Semiconductor Materials and Components Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, 01BP 1515, Lomé, Togo, Togo

4 University of Lille, CNRS, Centrale Lille, Polytechnique Hauts-de-France, Junia-ISEN, UMR 8520 - IEMN, F-59000 Lille, France, France

5 School of Arts and Natural Sciences, Joy University, Raja Nagar, Vadakangulam, Near Kanyakumari, Tirunelveli Dist.-627116, Tamil Nadu, India, India

View all affiliations
Received: 12 Aug 2025; Published: 8 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study investigates the influence of deposition time on the structural, morphological, and optical properties of ZnO thin films synthesized via a single-step chemical bath dep-osition, without a seed layer. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Visible spectroscopy. XRD analysis confirmed that all films are polycrystalline and crystallize in the hexagonal wurtzite structure, with average lattice parameters a = 3.247 Å and c = 5.209 Å. The crystallite size increased slightly from 13.27 nm to 14.05 nm with longer deposition times. FTIR spectra confirmed the presence of functional groups and chemical bonds characteristic of ZnO. SEM images revealed that the morphology evolves with deposition time, with ZnO microrods becoming more compact and densely packed. Optical measurements showed a progressive decrease in transmittance from 68% to 52% as deposition time increased from 30 to 120 minutes, while the optical band gap narrowed from 3.72 eV to 3.45 eV.

Fulltext
Keywords: thin film; zinc oxide; mesoporous; chemical bath deposition; deposition time; dye-sensitized solar cell

Article Metrics:

  1. Abdulrahman, Ahmed F., Ahmed, S. M., Hamad, S. M., Almessiere, M. A., Ahmed, N. M., & Sajadi, S. M. (2021). Effect of different pH values on growth solutions for the ZnO nanostructures. Chinese Journal of Physics, 71, 175–189. doi: 10.1016/j.cjph.2021.02.013
  2. Abdulrahman, Ahmed Fattah, Ahmed, S. M., Ahmed, N. M., & Almessiere, M. A. (2020). Enhancement of ZnO Nanorods Properties Using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration. Crystals, 10(5), 386. doi: 10.3390/cryst10050386
  3. Ako, O., Baneto, M., Senthilkumar, M., Haris, M., Gboglo, A. D., Gadedjisso-Tossou, K. S., Ahyi, A. C., Beltako, K., & Amou, K. A. (2025). Simultaneous effect of precursor sources and precursor concentration on structural, morphological and optical properties of ZnO nanostructured thin films for photovoltaic applications. International Journal of Renewable Energy Development, 0(0). doi: 10.61435/ijred.2025.61069
  4. Aksoy, S., Polat, O., Gorgun, K., Caglar, Y., & Caglar, M. (2020). Li doped ZnO based DSSC: Characterization and preparation of nanopowders and electrical performance of its DSSC. Physica E: Low-Dimensional Systems and Nanostructures, 121, 114127. doi: 10.1016/j.physe.2020.114127
  5. Anand, A., Mittal, S., Leeladevi, V., & De, D. (2023). Nanoflower shaped ZnO photoanode and natural dye sensitizer based solar cell fabrication. Materials Today: Proceedings, 72, 227–231. doi: 10.1016/j.matpr.2022.07.048
  6. Anyaegbunam, F. N. C., & Augustine, C. (2018). A study of optical band gap and associated urbach energy tail of chemically deposited metal oxides binary thin films. Digest Journal of Nanomaterials and Biostructures, 13(3), 847–856
  7. Apeh, O. O., Chime, U. K., Agbo, S., Ezugwu, S., Taziwa, R., Meyer, E., Sutta, P., Maaza, M., & Ezema, F. I. (2019). Properties of nanostructured ZnO thin films synthesized using a modified aqueous chemical growth method. Materials Research Express, 6(5), 056406. doi: 10.1088/2053-1591/aadcd6
  8. Arellano-Cortaza, M., Ramírez-Morales, E., Pal, U., Pérez-Hernández, G., & Rojas-Blanco, L. (2021). pH dependent morphology and texture evolution of ZnO nanoparticles fabricated by microwave-assisted chemical synthesis and their photocatalytic dye degradation activities. Ceramics International, 47(19), 27469–27478. doi: 10.1016/j.ceramint.2021.06.170
  9. Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics, 8(4), 123–134. doi: 10.1007/s40094-014-0141-9
  10. Binti Rosli, A. B., Binti Hamid, N. H., Bin Zulkefle, M. A., Binti Shariffudin, S. S., Binti Abdullah, W. F. H., & Herman, S. H. (2023). Post-deposition heat treatment effect on pH sensing behavior of chemical bath deposited nanostructured zinc oxide. International Journal of Hydrogen Energy, 48(4), 1636–1648. doi: 10.1016/j.ijhydene.2022.10.036
  11. Drici, A., Djeteli, G., Tchangbedji, G., Derouiche, H., Jondo, K., Napo, K., Bernède, J. C., Ouro-Djobo, S., & Gbagba, M. (2004). Structured ZnO thin films grown by chemical bath deposition for photovoltaic applications. Physica Status Solidi (a), 201(7), 1528–1536. doi: 10.1002/pssa.200306806
  12. Elen, K., Van Den Rul, H., Hardy, A., Van Bael, M. K., D’Haen, J., Peeters, R., Franco, D., & Mullens, J. (2009). Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter. Nanotechnology, 20(5), 055608. doi: 10.1088/0957-4484/20/5/055608
  13. Fekadu, G. H., & Tizazu, A. (2019). Short Review of Factors Affecting Chemical Bath Deposition Method for Metal Chalcogenide Thin Films. International Journal of Thin Film Science and Technology, 8(2), 43–53. doi: http://dx.doi.org/10.18576/ijtfst/080203
  14. Foo, K. L., Hashim, U., Muhammad, K., & Voon, C. H. (2014). Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Research Letters, 9(1). doi: 10.1186/1556-276x-9-429
  15. Gan, Y. K., Zakaria, N. F., Mohamad, I. S., & Norizan, M. N. (2020). The effect of ZnO photoanode solution ageing to the performance of dye-sensitized solar cell (DSSC). 020048. doi: 10.1063/1.5142140
  16. Garcia-Barrientos, A., Ambrosio-Lazaro, R. C., Ramirez-Bone, R., Garcia-Ramirez, M. A., Perez-Cortes, O., Tapia-Olvera, R., & Plaza-Castillo, J. (2023). pH-Effect in the Fabrication of ZnO Nanostructured Thin Films by Chemical Bath Deposition for Increasing the Efficiency of Solar Cells. Materials, 16(8), 3275. doi: 10.3390/ma16083275
  17. Gboglo, A. D., Baneto, M., Gadedjisso-Tossou, K. S., Ako, O., Ahyi, A. C., Haris, M., Senthilkumar, M., N’konou, K., Grandidier, B., Beltako, K., Amou, K. A., & Dzagli, M. M. (2025). Co-Effect of pH Control Agent and pH Value on the Physical Properties of ZnO Thin Films Obtained by Chemical Bath Deposition for Potential Application in Dye-Sensitized Solar Cells
  18. George, A., Kumari, P., Soin, N., Roy, S. S., & McLaughlin, J. A. (2010). Microstructure and field emission characteristics of ZnO nanoneedles grown by physical vapor deposition. Materials Chemistry and Physics, 123(2–3), 634–638. doi: 10.1016/j.matchemphys.2010.05.029
  19. Hamelmann, F. U. (2014). Transparent Conductive Oxides in Thin Film Photovoltaics. Journal of Physics: Conference Series, 559, 012016. doi: 10.1088/1742-6596/559/1/012016
  20. Hannachi, E., Slimani, Y., Nawaz, M., Trabelsi, Z., Yasin, G., Bilal, M., Almessiere, M. A., Baykal, A., Thakur, A., & Thakur, P. (2022). Synthesis, characterization, and evaluation of the photocatalytic properties of zinc oxide co-doped with lanthanides elements. Journal of Physics and Chemistry of Solids, 170, 110910. doi: 10.1016/j.jpcs.2022.110910
  21. Hassan, N. K., Hashim, M. R., & Al-Douri, Y. (2014). Morphology and optical investigations of ZnO pyramids and nanoflakes for optoelectronic applications. Optik, 125(11), 2560–2564. doi: 10.1016/j.ijleo.2013.10.023
  22. He, Y., Hu, J., & Xie, Y. (2015). High-efficiency dye-sensitized solar cells of up to 8.03% by air plasma treatment of ZnO nanostructures. Chemical Communications, 51(90), 16229–16232. doi: 10.1039/C5CC04567C
  23. Hemily, P. W. (1957). Structures cristallines des hydrates de la soude. I. Structure cristalline de NaOH.4H 2 O. Acta Crystallographica, 10(1), 37–44. doi: 10.1107/S0365110X57000092
  24. Hosono, H., & Ueda, K. (2017). Transparent Conductive Oxides. In S. Kasap & P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials (pp. 1391–1404). Cham: Springer International Publishing. doi: 10.1007/978-3-319-48933-9_58
  25. Idiawati, R., Mufti, N., Taufiq, A., Wisodo, H., Laila, I. K. R., Fuad, A., & Sunaryono. (2017). Effect of Growth Time on the Characteristics of ZnO Nanorods. IOP Conference Series: Materials Science and Engineering, 202, 012050. doi: 10.1088/1757-899X/202/1/012050
  26. Jahan Tamanna, N., Sahadat Hossain, Md., Mohammed Bahadur, N., & Ahmed, S. (2024). Green synthesis of Ag2O & facile synthesis of ZnO and characterization using FTIR, bandgap energy & XRD (Scherrer equation, Williamson-Hall, size-train plot, Monshi- Scherrer model). Results in Chemistry, 7, 101313. doi: 10.1016/j.rechem.2024.101313
  27. Kashif, M., Hashim, U., Ali, M. E., Ali, S. M. U., Rusop, M., Ibupoto, Z. H., & Willander, M. (2012). Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods. Journal of Nanomaterials, 2012, 1–6. doi: 10.1155/2012/452407
  28. Khorsand Zak, A., Majid, W. H. abd., Wang, H. Z., Yousefi, R., Moradi Golsheikh, A., & Ren, Z. F. (2013). Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrasonics Sonochemistry, 20(1), 395–400. doi: 10.1016/j.ultsonch.2012.07.001
  29. Kim, S. A., Abbas, M. A., Lee, L., Kang, B., Kim, H., & Bang, J. H. (2016). Control of morphology and defect density in zinc oxide for improved dye-sensitized solar cells. Physical Chemistry Chemical Physics, 18(44), 30475–30483. doi: 10.1039/C6CP04204J
  30. Koliverdov, V. F. (2010). Relation between the temperature coefficient of surface tension and phase diagrams. Russian Journal of Physical Chemistry A, 84(8), 1294–1300. doi: 10.1134/S0036024410080042
  31. Kuo, S.-Y., Yang, J.-F., & Lai, F.-I. (2014). Improved dye-sensitized solar cell with a ZnO nanotree photoanode by hydrothermal method. Nanoscale Research Letters, 9(1), 206. doi: 10.1186/1556-276X-9-206
  32. Liu, H., Avrutin, V., Izyumskaya, N., Özgür, Ü., & Morkoç, H. (2010). Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices and Microstructures, 48(5), 458–484. doi: 10.1016/j.spmi.2010.08.011
  33. Liyana, G. R., Sofyan, N., Dhaneswara, D., Subhan, A., & Yuwono, A. H. (2020). Optoelectronic properties of ZnO nanorods thin films derived from chemical bath deposition with different growth times. 030008. doi: 10.1063/5.0015869
  34. Look, D. C., Reynolds, D. C., Sizelove, J. R., Jones, R. L., Litton, C. W., Cantwell, G., & Harsch, W. C. (1998). Electrical properties of bulk ZnO. Solid State Communications, 105(6), 399–401. doi: 10.1016/S0038-1098(97)10145-4
  35. Lupan, O., Guérin, V. M., Ghimpu, L., Tiginyanu, I. M., & Pauporté, T. (2012). Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chemical Physics Letters, 550, 125–129. doi: 10.1016/j.cplett.2012.08.071
  36. Magiswaran, K., Norizan, M. N., Mahmed, N., Mohamad, I. S., Idris, S. N., Sabri, M. F. M., Amin, N., Sandu, A. V., Vizureanu, P., Nabiałek, M., & Salleh, M. A. A. M. (2022). Controlling the Layer Thickness of Zinc Oxide Photoanode and the Dye-Soaking Time for an Optimal-Efficiency Dye-Sensitized Solar Cell. Coatings, 13(1), 20. doi: 10.3390/coatings13010020
  37. Marotti, R. (2004). Bandgap energy tuning of electrochemically grown ZnO thin films by thickness and electrodeposition potential. Solar Energy Materials and Solar Cells, 82(1–2), 85–103. doi: 10.1016/j.solmat.2004.01.008
  38. McMurdie, H. F., Morris, M. C., Evans, E. H., Paretzkin, B., Wong-Ng, W., Ettlinger, L., & Hubbard, C. R. (1986). Standard X-Ray Diffraction Powder Patterns from the JCPDS Research Associateship. Powder Diffraction, 1(2), 64–77. doi: 10.1017/S0885715600011593
  39. Mohan, V. K., Srivastav, A., Güell, F., & John, T. T. (2024). pH-controlled synthesis of ZnO nanoflowers: A correlation study among the optoelectronic properties and improved photodegradation efficiency. Journal of Alloys and Compounds, 976, 172993. doi: 10.1016/j.jallcom.2023.172993
  40. Morkoç, H., & Özgür, Ü. (2008). Zinc Oxide: Fundamentals, Materials and Device Technology. John Wiley & Sons
  41. Mosalagae, K., Murape, D. M., & Lepodise, L. M. (2020). Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Heliyon, 6(7), e04458. doi: 10.1016/j.heliyon.2020.e04458
  42. Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Shuaib, D. T., Mohammed, A. K., & Sumaila, A. (2019). Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 10(4), 045013. doi: 10.1088/2043-6254/ab52f7
  43. Muthukumaran, S., & Gopalakrishnan, R. (2012). Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Optical Materials, 34(11), 1946–1953. doi: 10.1016/j.optmat.2012.06.004
  44. Nizar, B. M., Lajnef, M., Chaste, J., Chtourou, R., & Herth, E. (2023). Highly C-oriented (002) plane ZnO nanowires synthesis. RSC Advances, 13(22), 15077–15085. doi: 10.1039/D3RA01511D
  45. Ohodnicki, P. R., Wang, C., & Andio, M. (2013). Plasmonic transparent conducting metal oxide nanoparticles and nanoparticle films for optical sensing applications. Thin Solid Films, 539, 327–336. doi: 10.1016/j.tsf.2013.04.145
  46. Oura, K., Katayama, M., Zotov, A. V., Lifshits, V. G., & Saranin, A. A. (2003). Surface Science. Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-05179-5
  47. Parihar, V., Raja, M., & Paulose, R. (2018). A Brief Review of Structural, Electrical and Electrochemical Properties of Zinc Oxide Nanoparticles. Reviews on Advanced Materials Science, 53(2), 119–130. doi: 10.1515/rams-2018-0009
  48. Parize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., & Consonni, V. (2016). Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition. The Journal of Physical Chemistry C, 120(9), 5242–5250. doi: 10.1021/acs.jpcc.6b00479
  49. Rahman, R. A., Zulkefle, M. A., Herman, S. H., & Alip, R. I. (2019). Synthesis of Zinc Oxide Nanostructure by Chemical Bath Deposition (CBD) Method: Influence of Growth Time towards Nanostructure Characteristics. International Journal of Recent Technology and Engineering (IJRTE), 8(4), 6891–6896. doi: 10.35940/ijrte.D5212.118419
  50. Rahman, Rohanieza Abdul, Zulkefle, M. A., Herman, S. H., & Alip, R. I. (2020). Study on ZnO nanostructures characteristics: Growth time dependence. 020010. doi: 10.1063/5.0032850
  51. Rana, A. U. H. S., Shaikh, S. F., Al-Enizi, A. M., Agyeman, D. A., Ghani, F., Nah, I. W., & Shahid, A. (2020). Intrinsic Control in Defects Density for Improved ZnO Nanorod-Based UV Sensor Performance. Nanomaterials, 10(1), 142. doi: 10.3390/nano10010142
  52. Romero, R., Leinen, D., Dalchiele, E. A., Ramos-Barrado, J. R., & Martín, F. (2006). The effects of zinc acetate and zinc chloride precursors on the preferred crystalline orientation of ZnO and Al-doped ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 515(4), 1942–1949. doi: 10.1016/j.tsf.2006.07.152
  53. Rosli, N, Halim, M. M., Hashim, M. R., Maryam, W., Rusdi, M. F. M., & Muhammad, A. R. (2020). Effect of the Seeding Thickness on the Growth of ZnO Nanorods prepared by CBD. IOP Conference Series: Materials Science and Engineering, 854(1), 012074. doi: 10.1088/1757-899X/854/1/012074
  54. Rosli, Nurizati, Halim, M. M., & Hashim, M. R. (2021). Effect of CBD growth times on the ZnO microrods prepared on macroporous silicon. Applied Physics A, 127(9), 712. doi: 10.1007/s00339-021-04865-3
  55. Schaper, N., Alameri, D., Kim, Y., Thomas, B., McCormack, K., Chan, M., Divan, R., Gosztola, D. J., Liu, Y., & Kuljanishvili, I. (2021). Controlled Fabrication of Quality ZnO NWs/CNTs and ZnO NWs/Gr Heterostructures via Direct Two-Step CVD Method. Nanomaterials, 11(7), 1836. doi: 10.3390/nano11071836
  56. Siregar, N., Motlan, M., Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Jalan Willem Iskandar Medan Estate, Medan 20221, Indonesia, Sirait, M., & Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, Jalan Willem Iskandar Medan Estate, Medan 20221, Indonesia. (2023). Electroplated ZnO Thin Film: Influence of Deposition Time on Optical and Structural Properties. Journal of Physical Science, 34(1), 43–55. doi: 10.21315/jps2023.34.1.4
  57. Tauc, J., & Menth, A. (1972). States in the gap. Journal of Non-Crystalline Solids, 8–10, 569–585. doi: 10.1016/0022-3093(72)90194-9
  58. Tirtha, R. A., Dinesh Kumar, C., Sandhya, G., Amrendra, K. S., Rajesh, S., Pradeep, L., Bishwa, C. A., Prajwal, L., Bhupal, P., Nagendra, K. K., & Eun, H. C. (2022). Effects of Deposition Time on The Formaldehyde Sensing Ability of Zno Thin Films at Room Temperature. SSRN Electronic Journal. doi: 10.2139/ssrn.4264066
  59. Ungula J, Kiprotich S, & Swart HC. (2024). Effect of Deposition Time on Material Properties of ZnO Nanorods Grown on GZO Seed Layer by CBD. Journal of Nanosciences Research & Reports, 6(1), 1–6. doi: 10.47363/JNSRR/2024(6)156
  60. Urbach, F. (1953). The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids. Physical Review, 92(5), 1324–1324. doi: 10.1103/PhysRev.92.1324
  61. Wang, S.-F., Tseng, T.-Y., Wang, Y.-R., Wang, C.-Y., & Lu, H.-C. (2009). Effect of ZnO seed layers on the solution chemical growth of ZnO nanorod arrays. Ceramics International, 35(3), 1255–1260. doi: 10.1016/j.ceramint.2008.06.012
  62. Wen, H., Weng, B., Wang, B., Xiao, W., Liu, X., Wang, Y., Zhang, M., & Huang, H. (2024). Advancements in Transparent Conductive Oxides for Photoelectrochemical Applications. Nanomaterials, 14(7), 591. doi: 10.3390/nano14070591
  63. Wu, M.-S., & Yang, R.-S. (2018). Post-treatment of porous titanium dioxide film with plasmonic compact layer as a photoanode for enhanced dye-sensitized solar cells. Journal of Alloys and Compounds, 740, 695–702. doi: 10.1016/j.jallcom.2018.01.032
  64. Wunderlich, J. A. (1958). Contribution à l’étude cristallochimique des hydrates de soude. I. — Méthodes expérimentales et les structures cristallines de NaOH.H2O et de 2 NaOH.7 H2O. Bulletin de la Société française de Minéralogie et de Cristallographie, 81(10), 287–314. doi: 10.3406/bulmi.1958.5288
  65. Xiao-bo, L., Hong-lie, S., Hui, Z., & Bin-bin, L. (2007). Optical properties of nanosized ZnO films prepared by sol-gel process. Trans. Nonferrous Met. Soc. China
  66. Xu, S., Fang, D., Xiong, F., Ren, Y., Bai, C., Mi, B., & Gao, Z. (2023). Electrophoretic deposition of double-layer ZnO porous films for DSSC photoanode. Journal of Solid State Electrochemistry. doi: 10.1007/s10008-023-05708-2

Last update:

No citation recorded.

Last update: 2025-11-11 22:40:03

No citation recorded.