skip to main content

Enhancing Bio-Char Calorific Value through Catalytic Pyrolysis: The Role of Magnesium Oxide-Zeolite Based Catalysts

1Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE, 1410, Brunei Darussalam, Brunei Darussalam

2School of Business, Presidency University, House no. 11/A, Road no. 92, Gulshan 2, Dhaka-1212, Bangladesh

3Research Center for Chemistry, National Research and Innovation Agency (BRIN), Gd. 452 B.J Habibie Serpong, South Tangerang, Banten, Indonesia 15314., Indonesia

4 3Research Center for Chemistry, National Research and Innovation Agency (BRIN), Gd. 452 B.J Habibie Serpong, South Tangerang, Banten, Indonesia 15314, Indonesia

5 Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam, Brunei Darussalam

View all affiliations
Received: 19 Mar 2025; Published: 30 Oct 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Abstract. Investigation into biomass catalytic pyrolysis has escalated in the quest for sustainable energy sources. Catalytic pyrolysis provides a method to transform plentiful and renewable biomass into useful biofuels and bio-char, enhancing energy security and diminishing reliance on fossil fuels. The utilization of suitable catalysts in biomass catalytic pyrolysis is essential for improving the yield of bio-char with elevated calorific value. This study examines the influence of magnesium oxide-zeolite catalysts on the higher heating values (HHVs) of bio-char produced from coconut shells. The preliminary results demonstrate a significant increase in the calorific value of bio-char. The HHV rose from 11.51 MJ/kg for untreated coconut shells to 19.58 MJ/kg with bio-char using ZSM-5, and significantly to 27.54 MJ/kg with the MgO/ZSM-5 catalyst. The studies indicate that magnesium oxide substantially enhances the energy content of bio-char. This study seeks to assess the impact of several combinations of magnesium oxide, including MgO/ZSM-5, MgO/Y2O3/ZSM-5, and MgO/Mn3O4/ZSM-5, on the pyrolysis process. The aim of this research is to optimize the production of bio-char with elevated higher heating values (HHVs) at various temperatures. The expected results will provide substantial insights into the development of efficient catalytic systems for bio-char production, hence aiding sustainable energy solutions.

Note: This article has supplementary file(s).

Fulltext |  Research Instrument
Submission Request to IJRED RSCE-88 (Recommendation letter)
Subject
Type Research Instrument
  Download (178KB)    Indexing metadata
Keywords: Pyrolysis; biomass; low-cost catalyts; Magnesium Oxide-Zeolite Based Catalysts; Bio-char

Article Metrics:

  1. Abdullah, H., Mediaswanti, K.A. and Wu, H. (2010) ‘Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of mallee trees’, Energy and Fuels, 24(3), pp. 1972–1979. Available at: https://doi.org/10.1021/ef901435f
  2. Akhtar, J. and Saidina Amin, N. (2012) ‘A review on operating parameters for optimum liquid oil yield in biomass pyrolysis’, Renewable and Sustainable Energy Reviews, 16(7), pp. 5101–5109. Available at: https://doi.org/10.1016/j.rser.2012.05.033
  3. Anand, A., Gautam, S. and Ram, L.C. (2023) ‘Feedstock and pyrolysis conditions affect suitability of biochar for various sustainable energy and environmental applications’, Journal of Analytical and Applied Pyrolysis, 170, p. 105881. Available at: https://doi.org/10.1016/j.jaap.2023.105881
  4. Bhagat, D. et al. (2017) ‘Yttrium oxide (Y2O3): Efficient and green catalysis for the synthesis of chromeno[2,3-b]quinolinedione’, 3
  5. Bianasari, A.A. et al. (2024) ‘Influence of combined catalysts on the catalytic pyrolysis process of biomass: A systematic literature review’, Energy Conversion and Management, 309, p. 118437. Available at: https://doi.org/10.1016/j.enconman.2024.118437
  6. de Boer, R.M., van Huis, M.A. and Mendes, R.G. (2024) ‘Reversible MnO to Mn3O4 Oxidation in Manganese Oxide Nanoparticles’, Small, 20(9), p. 2304925. Available at: https://doi.org/10.1002/smll.202304925
  7. Chellappan, S. et al. (2018) ‘Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification’, Chinese Journal of Chemical Engineering, 26(12), pp. 2654–2663. Available at: https://doi.org/10.1016/j.cjche.2018.02.034
  8. Cho, G.Y. et al. (2019) ‘Optimization of Y2O3 dopant concentration of yttria stabilized zirconia thin film electrolyte prepared by plasma enhanced atomic layer deposition for high performance thin film solid oxide fuel cells’, Energy, 173, pp. 436–442. Available at: https://doi.org/10.1016/j.energy.2019.01.124
  9. Chueaphetr, R. et al. (2023) ‘Enhancing deoxygenation of waste cooking palm oil over CaO-MgO catalyst modified by K2O for green bio-fuel’, Fuel, 354, p. 129350. Available at: https://doi.org/10.1016/j.fuel.2023.129350
  10. Chung, D. d. l. (2022) ‘Performance of Thermal Interface Materials’, Small, 18(16), p. 2200693. Available at: https://doi.org/10.1002/smll.202200693
  11. De Luca, A. et al. (2021) ‘Thermal stability and influence of Y2O3 dispersoids on the heat treatment response of an additively manufactured ODS Ni–Cr–Al–Ti γ/γ′ superalloy’, Journal of Materials Research and Technology, 15, pp. 2883–2898. Available at: https://doi.org/10.1016/j.jmrt.2021.09.076
  12. Demirbas, A. (2007) ‘Effects of Moisture and Hydrogen Content on the Heating Value of Fuels’, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects [Preprint]. Available at: https://doi.org/10.1080/009083190957801
  13. Devi, P. (2014) ‘Optimization of Pyrolysis Conditions to Synthesize Adsorbent from Paper Mill Sludge’, Journal of Clean Energy Technologies, 2, p. 2014. Available at: https://doi.org/10.7763/JOCET.2014.V2.118
  14. Domingues, R.R. et al. (2017) ‘Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits’, PloS One, 12(5), p. e0176884. Available at: https://doi.org/10.1371/journal.pone.0176884
  15. Dong, H. et al. (2022) ‘Pyrolysis gas from biomass and plastics over X-Mo@MgO (X = Ni, Fe, Co) catalysts into functional carbon nanocomposite: Gas reforming reaction and proper process mechanisms’, Science of the Total Environment, 831. Available at: https://doi.org/10.1016/j.scitotenv.2022.154751
  16. Dong, W. et al. (2022) ‘Rare-Earth Metal Yttrium-Modified Composite Metal Oxide Catalysts for High Selectivity Synthesis of Biomass-Derived Lactic Acid from Cellulose’, ChemCatChem, 14(12), p. e202200265. Available at: https://doi.org/10.1002/cctc.202200265
  17. Elangovan, S. et al. (2017) ‘Electrochemical Upgrading of Bio-Oil’, ECS Transactions, 78(1), p. 3149. Available at: https://doi.org/10.1149/07801.3149ecst
  18. Elangovan, S. et al. (2018) Novel Electro-Deoxygenation Process for Bio-oil Upgrading. DOE-OxEon-6288. OxEon Energy, LLC, Clearfield, UT (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States); National Renewable Energy Lab. (NREL), Golden, CO (United States). Available at: https://doi.org/10.2172/1458768
  19. Elbasiouny, H. et al. (2021) ‘Contradictory Results of Soil Greenhouse Gas Emissions as Affected by Biochar Application: Special Focus on Alkaline Soils’, International Journal of Environmental Research, 15, pp. 903–920. Available at: https://doi.org/10.1007/s41742-021-00358-6
  20. Fernández, J.M. et al. (2014) ‘Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers’, Science of The Total Environment, 482–483, pp. 1–7. Available at: https://doi.org/10.1016/j.scitotenv.2014.02.103
  21. Gagrani, A. et al. (2019) ‘pH dependent catalytic redox properties of Mn3O4 nanoparticles’, Materials Chemistry and Physics, 231, pp. 41–47. Available at: https://doi.org/10.1016/j.matchemphys.2019.04.017
  22. Gayathri, R., Gopinath, K.P. and Kumar, P.S. (2021) ‘Adsorptive separation of toxic metals from aquatic environment using agro waste biochar: Application in electroplating industrial wastewater’, Chemosphere, 262. Available at: https://doi.org/10.1016/j.chemosphere.2020.128031
  23. Gezae, A. and Chandraratne, M. (2018) ‘Biochar Production From Biomass Waste-Derived Material’, in. Available at: https://doi.org/10.1016/B978-0-12-803581-8.11249-4
  24. Ghazimoradi, M. et al. (2023) ‘A facile strategy to prepare ZSM-5-based composites with enhanced light olefin selectivity and stability in the HTO process’, RSC Advances, 13(29), pp. 20058–20067. Available at: https://doi.org/10.1039/D3RA03680D
  25. Guedes, R.E., Luna, A.S. and Torres, A.R. (2018) ‘Operating parameters for bio-oil production in biomass pyrolysis: A review’, Journal of Analytical and Applied Pyrolysis, 129, pp. 134–149. Available at: https://doi.org/10.1016/j.jaap.2017.11.019
  26. Guo, Z. et al. (2022) ‘Microstructure and mechanical properties of Al matrix composite reinforced with micro/nano-sized yttrium oxyfluoride’, Materials Science and Engineering: A, 854, p. 143820. Available at: https://doi.org/10.1016/j.msea.2022.143820
  27. Gupta, O.P. (2018) Elements of Fuel & Combustion Technology. Khanna Publishing House
  28. Harris, D.C. et al. (2013) ‘Properties of an Infrared-Transparent MgO:Y2O3 Nanocomposite’, Journal of the American Ceramic Society, 96(12), pp. 3828–3835. Available at: https://doi.org/10.1111/jace.12589
  29. Hata, D. et al. (2021) ‘Lactic Acid Production from Glucose over Y2O3-based Catalysts under Base-free Conditions’, Journal of the Japan Petroleum Institute, 64(5), pp. 280–292. Available at: https://doi.org/10.1627/jpi.64.280
  30. Hemavathy, R.V. et al. (2020) ‘Adsorptive separation of Cu(II) ions from aqueous medium using thermally/chemically treated Cassia fistula based biochar’, Journal of Cleaner Production, 249. Available at: https://doi.org/10.1016/j.jclepro.2019.119390
  31. Hendrix, Y.S., Nimas, M.S.S. and Yusron, S. (2024) ‘Characterisation of biochar from various carbon sources’, BIO Web of Conferences [Preprint]
  32. Hu, Z. and Wei, L. (2023) ‘Review on Characterization of Biochar Derived from Biomass Pyrolysis via Reactive Molecular Dynamics Simulations’, Journal of Composites Science, 7(9), p. 354. Available at: https://doi.org/10.3390/jcs7090354
  33. Huang, Y. et al. (2015) ‘Combining Mo-Cu/HZSM-5 with a two-stage catalytic pyrolysis system for pine sawdust thermal conversion’, Fuel, 150, pp. 656–663. Available at: https://doi.org/10.1016/j.fuel.2015.02.071
  34. Hussein, G.A.M. and Gates, B.C. (1998) ‘Surface and Catalytic Properties of Yttrium Oxide: Evidence from Infrared Spectroscopy’, Journal of Catalysis, 176(2), pp. 395–404. Available at: https://doi.org/10.1006/jcat.1998.2067
  35. Irfan, M. et al. (2016) ‘Co-production of biochar, bio-oil and syngas from halophyte grass (Achnatherum splendens L.) under three different pyrolysis temperatures’, Bioresource Technology, 211, pp. 457–463. Available at: https://doi.org/10.1016/j.biortech.2016.03.077
  36. Isahak, W.N.R.W. et al. (2012) ‘A review on bio-oil production from biomass by using pyrolysis method’, Renewable and Sustainable Energy Reviews, 16(8), pp. 5910–5923. Available at: https://doi.org/10.1016/j.rser.2012.05.039
  37. Jafri, N. et al. (2018) ‘A review on production and characterization of biochars for application in direct carbon fuel cells’, Process Safety and Environmental Protection, 118, pp. 152–166. Available at: https://doi.org/10.1016/j.psep.2018.06.036
  38. Ji, X. et al. (2017) ‘Effect of MgO promoter on Ni-Mg/ZSM-5 catalysts for catalytic pyrolysis of lipid-extracted residue of Tribonema minus’, Journal of Analytical and Applied Pyrolysis, 123, pp. 278–283. Available at: https://doi.org/10.1016/j.jaap.2016.10.032
  39. Kaczmarczyk, J. et al. (2016) ‘Thermodynamic Stability, Redox Properties, and Reactivity of Mn3O4, Fe3O4, and Co3O4 Model Catalysts for N2O Decomposition: Resolving the Origins of Steady Turnover’, ACS Catalysis, 6(2), pp. 1235–1246. Available at: https://doi.org/10.1021/acscatal.5b02642
  40. Khater, E.-S. et al. (2024) ‘Biochar production under different pyrolysis temperatures with different types of agricultural wastes’, Scientific Reports, 14(1), p. 2625. Available at: https://doi.org/10.1038/s41598-024-52336-5
  41. Kloss, S. et al. (2012) ‘Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties’, Journal of Environmental Quality, 41(4), pp. 990–1000. Available at: https://doi.org/10.2134/jeq2011.0070
  42. Kwapinski, W. et al. (2010) ‘Biochar from biomass and waste’, Waste and Biomass Valorization, 1(2), pp. 177–189. Available at: https://doi.org/10.1007/s12649-010-9024-8
  43. Lachos-Perez, D. et al. (2023) ‘Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques’, Analytica, 4(2), pp. 182–205. Available at: https://doi.org/10.3390/analytica4020015
  44. Lee, Y. et al. (2013) ‘Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C’, Bioresource Technology, 148, pp. 196–201. Available at: https://doi.org/10.1016/j.biortech.2013.08.135
  45. Lehmann, J. and Joseph, S. (2009) ‘Biochar for environmental management: An introduction. Biochar for environmental management. Science and technology’, Earthscan Publishers Ltd [Preprint]
  46. Lehmann, J. and Joseph, S. (2015) ‘Biochar for environmental management: an introduction’, in Biochar for Environmental Management. 2nd edn. Routledge
  47. Li, J.F. et al. (2014) ‘Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming’, International Journal of Hydrogen Energy, 39(21), pp. 10927–10940. Available at: https://doi.org/10.1016/j.ijhydene.2014.05.021
  48. Li, X. et al. (2009) ‘Synthesis of Mn3O4 nanoparticles and their catalytic applications in hydrocarbon oxidation’, Powder Technology, 190(3), pp. 324–326. Available at: https://doi.org/10.1016/j.powtec.2008.08.010
  49. Lin, Y.-F. et al. (2013) ‘Hydrothermal synthesis of Lewis acid Y2O3 cubes and flowers for the removal of phospholipids from soybean oil’, CrystEngComm, 15(33), pp. 6506–6510. Available at: https://doi.org/10.1039/C3CE40791H
  50. Majedi, F., Wijayanti, W. and Hamidi, N. (2016) ‘PERUBAHAN MASSA DAN NILAI KALOR CHAR DENGAN VARIASI HEATING RATE DAN TEMPERATUR PADA PIROLISIS SERBUK KAYU MAHONI (SWITENIA MACROPHYLLA)’, ROTOR, 9(2), pp. 59–64
  51. Martínez, J.D. et al. (2014) ‘Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel’, Fuel Processing Technology, 119, pp. 263–271. Available at: https://doi.org/10.1016/j.fuproc.2013.11.015
  52. Merckel, R.D., Labuschagne, F.J.W.J. and Heydenrych, M.D. (2019) ‘Oxygen consumption as the definitive factor in predicting heat of combustion’, Applied Energy, 235, pp. 1041–1047. Available at: https://doi.org/10.1016/j.apenergy.2018.10.111
  53. Mohanty, S.K. et al. (2018) ‘Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment’, Science of the Total Environment, 625, pp. 1644–1658. Available at: https://doi.org/10.1016/j.scitotenv.2018.01.037
  54. Narasimharao, K. and Al-Sultan, F.S. (2020) ‘Y2O3 modified Au-La2O3 nanorod catalysts for oxidative cracking of n-propane’, Fuel, 280, p. 118599. Available at: https://doi.org/10.1016/j.fuel.2020.118599
  55. Oladosu, K. et al. (2022) ‘Optimization of hhv and energy yield from torrefaction of Albizia zygia wood- calcium hydrogen phosphate catalyst blends using optimal combined design’, Acta Periodica Technologica, 2022, pp. 109–122. Available at: https://doi.org/10.2298/APT2253109O
  56. Pawelczyk, E., Wysocka, I. and Gębicki, J. (2022) ‘Pyrolysis Combined with the Dry Reforming of Waste Plastics as a Potential Method for Resource Recovery—A Review of Process Parameters and Catalysts’, Catalysts, 12(4), p. 362. Available at: https://doi.org/10.3390/catal12040362
  57. Pham, X.P. (2014) ‘Influences of molecular profiles of biodiesels on atomization, combustion and emission characteristics’
  58. Pike, J. et al. (2007) ‘Synthesis and Redox Behavior of Nanocrystalline Hausmannite (Mn3O4)’, Chemistry of Materials, 19(23), pp. 5609–5616. Available at: https://doi.org/10.1021/cm071704b
  59. Preeti et al. (2024) ‘Physico-chemical characterization of coconut shell (Cocos nucifera)’, International Journal of Advanced Biochemistry Research, 8(3S), pp. 118–122. Available at: https://doi.org/10.33545/26174693.2024.v8.i3Sb.703
  60. Pütün, E. (2010) ‘Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst’, Energy, 35(7), pp. 2761–2766. Available at: https://doi.org/10.1016/j.energy.2010.02.024
  61. Qian, C. et al. (2020) ‘Prediction of higher heating values of biochar from proximate and ultimate analysis’, Fuel, 265, p. 116925. Available at: https://doi.org/10.1016/j.fuel.2019.116925
  62. Qurat-ul-Ain et al. (2021) ‘Effect of different temperatures on the properties of pyrolysis products of Parthenium hysterophorus’, Journal of Saudi Chemical Society, 25(3), p. 101197. Available at: https://doi.org/10.1016/j.jscs.2021.101197
  63. Rahim, M. et al. (2023) ‘UTILIZATION OF SYNTHESIS GAS GENERATED FROM AGRICULTURAL WASTE AS CLEAN SUSTAINABLE FUEL’, ASEAN Engineering Journal, 13, pp. 159–164. Available at: https://doi.org/10.11113/aej.v13.19218
  64. Rashid, M. et al. (2020) ‘Prospects of Biochar in Alkaline Soils to Mitigate Climate Change’, in S
  65. Fahad et al. (eds) Environment, Climate, Plant and Vegetation Growth. Cham: Springer International Publishing, pp. 133–149. Available at: https://doi.org/10.1007/978-3-030-49732-3_7
  66. Reza, M.S. et al. (2023) ‘Investigation of Thermochemical Properties and Pyrolysis of Barley Waste as a Source for Renewable Energy’, Sustainability, 15(2). Available at: https://doi.org/10.3390/su15021643
  67. Risch, M. et al. (2017) ‘Redox Processes of Manganese Oxide in Catalyzing Oxygen Evolution and Reduction: An in Situ Soft X-ray Absorption Spectroscopy Study’, The Journal of Physical Chemistry C, 121(33), pp. 17682–17692. Available at: https://doi.org/10.1021/acs.jpcc.7b05592
  68. Ryu, H.W. et al. (2019) ‘Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst’, Energy, 179, pp. 669–675. Available at: https://doi.org/10.1016/j.energy.2019.05.015
  69. Santamaria, L. et al. (2020) ‘Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles’, Fuel Processing Technology, 198, p. 106223. Available at: https://doi.org/10.1016/j.fuproc.2019.106223
  70. Shi, D. et al. (2023) ‘Acidic properties of Al-rich ZSM-5 crystallized in strongly acidic fluoride medium’, Microporous and Mesoporous Materials, 358, p. 112332. Available at: https://doi.org/10.1016/j.micromeso.2022.112332
  71. Shoudho, K.N. et al. (2024) ‘Biochar in global carbon cycle: Towards sustainable development goals’, Current Research in Green and Sustainable Chemistry, 8, p. 100409. Available at: https://doi.org/10.1016/j.crgsc.2024.100409
  72. Sieradzka, M. et al. (2022) ‘Pyrolysis of Biomass Wastes into Carbon Materials’, Energies, 15(5), p. 1941. Available at: https://doi.org/10.3390/en15051941
  73. Singh, M., Dey, E.S. and Dicko, C. (2020) ‘Manganese oxide functionalized silk fibers for enzyme mimic application’, Reactive and Functional Polymers, 151, p. 104565. Available at: https://doi.org/10.1016/j.reactfunctpolym.2020.104565
  74. Singh, R.K., Chakraborty, J.P. and Sarkar, A. (2020) ‘Optimizing the torrefaction of pigeon pea stalk (cajanus cajan) using response surface methodology (RSM) and characterization of solid, liquid and gaseous products’, Renewable Energy, 155, pp. 677–690. Available at: https://doi.org/10.1016/j.renene.2020.03.184
  75. Smets, K. et al. (2013) ‘Slow catalytic pyrolysis of rapeseed cake: Product yield and characterization of the pyrolysis liquid’, Biomass and Bioenergy, 57, pp. 180–190. Available at: https://doi.org/10.1016/j.biombioe.2013.07.001
  76. Stefanidis, S.D. et al. (2011) ‘In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor’, Bioresource Technology, 102(17), pp. 8261–8267. Available at: https://doi.org/10.1016/j.biortech.2011.06.032
  77. Stefanidis, S.D. et al. (2016) ‘Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil’, Applied Catalysis B: Environmental, 196, pp. 155–173. Available at: https://doi.org/10.1016/j.apcatb.2016.05.031
  78. Terry, L.M. et al. (2021) ‘Bio-oil production from pyrolysis of oil palm biomass and the upgrading technologies: A review’, Carbon Resources Conversion, 4, pp. 239–250. Available at: https://doi.org/10.1016/j.crcon.2021.10.002
  79. Tomczyk, A., Sokołowska, Z. and Boguta, P. (2020) ‘Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects’, Reviews in Environmental Science and Bio/Technology, 19(1), pp. 191–215. Available at: https://doi.org/10.1007/s11157-020-09523-3
  80. Tripathi, M., Sahu, J.N. and Ganesan, P. (2016) ‘Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review’, Renewable and Sustainable Energy Reviews, 55, pp. 467–481. Available at: https://doi.org/10.1016/j.rser.2015.10.122
  81. Verheijen, F. et al. (2010) Biochar Application to Soils – A Critical Scientific Review of Effects on Soil Properties, Processes and Functions, Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions
  82. Vichaphund, S. et al. (2014) ‘Catalytic upgrading pyrolysis vapors of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS’, Renewable Energy, 65, pp. 70–77. Available at: https://doi.org/10.1016/j.renene.2013.07.016
  83. Wang, K. et al. (2015) ‘Catalytic conversion of carbohydrate-derived oxygenates over HZSM-5 in a tandem micro-reactor system’, Green Chemistry, 17(1), pp. 557–564. Available at: https://doi.org/10.1039/c4gc01784f
  84. Wang, Y. et al. (2014) ‘Evaluation of Ni/Y2O3/Al2O3 catalysts for hydrogen production by autothermal reforming of methane’, International Journal of Hydrogen Energy, 39(21), pp. 10971–10979. Available at: https://doi.org/10.1016/j.ijhydene.2014.05.074
  85. Wardani, S., Pranoto and Himawanto, D.A. (2018) ‘Kinetic parameters and calorific value of biochar from mahogany (Swietenia macrophylla King) wood pyrolysis with heating rate and final temperature variations’, AIP Conference Proceedings, 2049(1), p. 20034. Available at: https://doi.org/10.1063/1.5082439
  86. Wystalska, K. and Kwarciak-Kozłowska, A. (2021) ‘The Effect of Biodegradable Waste Pyrolysis Temperatures on Selected Biochar Properties’, Materials, 14(7), p. 1644. Available at: https://doi.org/10.3390/ma14071644
  87. Xiong, T. et al. (2017) ‘Mn3O4/Reduced graphene oxide based supercapacitor with ultra-long cyclic performance’, J. Mater. Chem. A, 5. Available at: https://doi.org/10.1039/C7TA03319B
  88. Xu, K. et al. (2022) ‘Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction’, Nature Communications, 13(1), p. 2443. Available at: https://doi.org/10.1038/s41467-022-30138-5
  89. Xu, L. and Yuan, J. (2015) ‘Online identification of the lower heating value of the coal entering the furnace based on the boiler-side whole process models’, Fuel, 161, pp. 68–77. Available at: https://doi.org/10.1016/j.fuel.2015.08.009
  90. Yaashikaa, P.R. et al. (2020) ‘A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy’, Biotechnology Reports, 28, p. e00570. Available at: https://doi.org/10.1016/j.btre.2020.e00570
  91. Yadav, K. et al. (2019) ‘Influence of Process Parameters on Synthesis of Biochar by Pyrolysis of Biomass: An Alternative Source of Energy’, in Recent Advances in Pyrolysis. IntechOpen
  92. Yi, F. et al. (2022) ‘Correlation of Brønsted acid sites and Al distribution in ZSM-5 zeolites and their effects on butenes conversion’, Fuel, 320, p. 123729. Available at: https://doi.org/10.1016/j.fuel.2022.123729
  93. Zhang, H. et al. (2011) ‘Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: The hydrogen to carbon effective ratio’, Energy and Environmental Science, 4(6), pp. 2297–2307. Available at: https://doi.org/10.1039/c1ee01230d
  94. Zhang, H. et al. (2017) ‘Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy’, Biomass and Bioenergy, 105, pp. 136–146. Available at: https://doi.org/10.1016/j.biombioe.2017.06.024
  95. Zhao, Z., Zhao, J. and Yang, C. (2017) ‘Efficient removal of ciprofloxacin by peroxymonosulfate/Mn3O4-MnO2 catalytic oxidation system’, Chemical Engineering Journal, 327, pp. 481–489. Available at: https://doi.org/10.1016/j.cej.2017.06.064
  96. Zheng, J. et al. (2006) ‘Thermal conversion of rice husks and sawdust to liquid fuel’, Waste Management, 26(12), pp. 1430–1435. Available at: https://doi.org/10.1016/j.wasman.2005.10.011

Last update:

No citation recorded.

Last update: 2025-11-02 02:33:50

No citation recorded.