skip to main content

View PDF Download fulltext

Enhancing hierarchical factor (HF) and catalytic performance of Bayah’s natural zeolite catalyst for hydrocracking of palm oil to biofuels

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang, Central Java, 50275, Indonesia

2Laboratory of Plasma-Catalysis (R3.5), Center of Research and Service – Diponegoro University (CORES-DU), Integrated Laboratory, Diponegoro University, Semarang, Central Java, 50275, Indonesia

3Industrial Chemical Engineering Technology, Vocational College, Diponegoro University, Semarang, Central Java, 50275, Indonesia

Received: 13 Aug 2025; Revised: 18 Nov 2025; Accepted: 16 Dec 2025; Available online: 3 Jan 2026; Published: 1 Mar 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study investigates enhancement of Bayah’s Natural Zeolite (BNZ), an abundant resource from Banten, Indonesia, as a catalyst for hydrocracking palm oil into biofuels. The primary objective was to improve the zeolite's Hierarchical Factor (HF) and overall catalytic performance through a targeted modification process. The modification involved a two-step procedure: a desilication treatment using various concentrations of sodium hydroxide (NaOH) to create mesoporosity, followed by activation with an ammonium acetate (CH₃COONH₄) solution. The structural, textural, and chemical properties of the modified catalysts were systematically characterized using X-ray Diffraction (XRD), X-ray Fluorescence (XRF), and Brunauer-Emmett-Teller/Barrett-Joyner-Halenda (BET-BJH) analysis. The characterization results revealed that the NaOH treatment increased the HF, average pore diameter, pore volume, and specific surface area compared to the untreated BNZ. Catalytic performance was evaluated in a continuous hydrocracking reactor using palm oil as feedstock. Among the modified samples, the BNZ-3 catalyst exhibited the most promising activity, demonstrating an optimal average pore diameter of 3.83 nm and an HF value of 0.069. This catalyst achieved an impressive Organic Liquid Product (OLP) yield of 85.67% and a palm oil conversion rate of 97.22%. The conversion of triglycerides was monitored via Fourier Transform Infrared Spectroscopy (FT-IR) by observing the disappearance of the ester bond absorption peak at 1745 cm⁻¹. Furthermore, Gas Chromatography-Mass Spectrometry (GC-MS) analysis of the distilled biofuel confirmed the presence of desired hydrocarbons fractions, including gasoline, kerosene, and diesel components, alongside minor quantities of alcohols, esters, and acids. The DSC results corroborate the TG and DTG analyses, reinforcing the conclusion that BNZ‑3 experiences more extensive coke deposition and undergoes more intense thermal decomposition than the blank catalyst. These findings underscore the potential of modified natural zeolites as effective, low-cost catalysts for sustainable biofuel production.
Keywords: Hydrocracking; Palm Oil; Biofuel; Bayah’s Natural Zeolit (BNZ); Hierarchical Factor (HF)
Funding: Universitas Diponegoro under contract WCRU-A_118–22/UN7.6.1/PP/2021

Article Metrics:

  1. Abelló, S., Bonilla, A., & Pérez-Ramírez, J. (2009). Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching. Applied Catalysis A: General, 364(1–2), 191–198. https://doi.org/10.1016/j.apcata.2009.05.055
  2. Akgül, M., & Karabakan, A. (2011). Promoted dye adsorption performance over desilicated natural zeolite. Microporous and Mesoporous Materials, 145(1–3), 157–164. https://doi.org/10.1016/j.micromeso.2011.05.012
  3. Akyalcin, S., Akyalcin, L., & Bjørgen, M. (2019). Optimization of desilication parameters of low-silica ZSM-12 by Taguchi method. Microporous and Mesoporous Materials, 273, 256–264. https://doi.org/10.1016/j.micromeso.2018.07.014
  4. Alaba, P. A., Sani, Y. M., Mohammed, I. Y., & Wan Daud, W. M. A. (2016). Insight into catalyst deactivation mechanism and suppression techniques in thermocatalytic deoxygenation of bio-oil over zeolites. Reviews in Chemical Engineering, 32(1). https://doi.org/10.1515/revce-2015-0025
  5. Azhari, N. J., Mardiana, S., & Kadja, G. T. M. (2023). ZSM-48 zeolites with controllable mesopore formation: Synthesis, characterization, and catalytic performance. Chemical Engineering Journal Advances, 16, 100533. https://doi.org/10.1016/j.ceja.2023.100533
  6. Aziz, I., Retnaningsih, T., Gustama, D., Saridewi, N., Adhani, L., & Dwiatmoko, A. A. (2021). Catalytic cracking of jatropha oil into biofuel over hierarchical zeolite supported NiMo catalyst. AIP Conf. Proc. 2349, 020004. https://doi.org/10.1063/5.0051737
  7. Aziz, I., Sugita, P., Darmawan, N., & Dwiatmoko, A. A. (2023). Effect of desilication process on natural zeolite as Ni catalyst support on hydrodeoxygenation of palm fatty acid distillate (PFAD) into green diesel. South African Journal of Chemical Engineering, 45, 328–338. https://doi.org/10.1016/j.sajce.2023.07.002
  8. Aziz, I., Sugita, P., Darmawan, N., Dwiatmoko, A. A., & Rustyawan, W. (2024). Hydrodeoxygenation of palm fatty acid distillate (PFAD) over natural zeolite-supported nickel phosphide catalyst: Insight into Ni/P effect. Case Studies in Chemical and Environmental Engineering, 9, 100571. https://doi.org/10.1016/j.cscee.2023.100571
  9. Badan pusat statistik (BPS), (2025). Statistical Yearbook of Indonesia 2025. V 53, 2025. https://www.bps.go.id/id/publication
  10. Chen, L.-H., Sun, M.-H., Wang, Z., Yang, W., Xie, Z., & Su, B.-L. (2020). Hierarchically Structured Zeolites: From Design to Application. Chemical Reviews, 120(20), 11194–11294. https://doi.org/10.1021/acs.chemrev.0c00016
  11. Coates, J. (2000). Interpretation of Infrared Spectra, A Practical Approach. In R. A. Meyers (Ed.), Encyclopedia of Analytical Chemistry (1st ed.). Wiley. https://doi.org/10.1002/9780470027318.a5606
  12. Desmurs, L., Galarneau, A., Cammarano, C., Hulea, V., C. Vaulot, H. Nouali, B. Lebeau, T. J. Daou, C. Vieira Soares, G. Maurin, M. Haranczyk, I. Batonneau-Gener, A. Sachse, (2022) Determination of Microporous and Mesoporous Surface Areas and Volumes of Mesoporous Zeolites by Corrected t-Plot Analysis. ChemNanoMat 8, e202200051. https://doi.org/10.1002/cnma.202200051
  13. Dewanti, A. T., Rasyid, R., & Kalla, R. (2022). Effect of HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 Catalyst on The Cracking of Palm Oil. Jurnal Kimia Valensi, 8(2), 190–198. https://doi.org/10.15408/jkv.v8i2.25774
  14. Fu, S., Fang, Q., Li, A., Li, Z., Han, J., Dang, X., & Han, W. (2021). Accurate characterization of full pore size distribution of tight sandstones by low‐temperature nitrogen gas adsorption and high‐pressure mercury intrusion combination method. Energy Science & Engineering, 9(1), 80–100. https://doi.org/10.1002/ese3.817
  15. García, J. R., Bertero, M., Falco, M., & Sedran, U. (2015). Catalytic cracking of bio-oils improved by the formation of mesopores by means of Y zeolite desilication. Applied Catalysis A: General, 503, 1–8. https://doi.org/10.1016/j.apcata.2014.11.005
  16. Guo, X., Guo, X.-N., Zhang, R. Q., Di, Z., Kang, B., Wei, Y., & Jia, J. (2024). Rational design on hierarchically porous Cu/ZSM-5 zeolite catalyst by protectively alkali-etching strategy. Catalysis Today, 433, 114656. https://doi.org/10.1016/j.cattod.2024.114656
  17. Groen, J. C., Abelló, S., Villaescusa, L. A., & Pérez-Ramírez, J. (2008). Mesoporous beta zeolite obtained by desilication. Microporous and Mesoporous Materials, 114(1–3), 93–102. https://doi.org/10.1016/j.micromeso.2007.12.025
  18. Groen, J. C., Moulijn, J. A., & Pérez-Ramírez, J. (2006). Desilication: On the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem., 16(22), 2121–2131. https://doi.org/10.1039/B517510K
  19. Groen, J. C., Peffer, L. A. A., Moulijn, J. A., & Pérez‐Ramírez, J. (2005). Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore‐Directing Agent. Chemistry – A European Journal, 11(17), 4983–4994. https://doi.org/10.1002/chem.200500045
  20. Groen, J., Sano, T., Moulijn, J., & Perezramirez, J. (2007). Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions☆. Journal of Catalysis, 251(1), 21–27. https://doi.org/10.1016/j.jcat.2007.07.020
  21. Istadi, I., Kusumawati, Y., Riyanto, T., Anggoro, D. D., Jongsomjit, B., & Putranto, A. B. (2024). Enhancing spent RFCC catalysts for biofuel production: Ultrasound-assisted acid treatment for improved crystallinity, pore size, and acid site ratio. Case Studies in Chemical and Environmental Engineering, 10, 100843. https://doi.org/10.1016/j.cscee.2024.100843
  22. Istadi, I., Riyanto, T., Anggoro, D. D., Pramana, C. S., & Ramadhani, A. R. (2023). High Acidity and Low Carbon-Coke Formation Affinity of Co-Ni/ZSM-5 Catalyst for Renewable Liquid Fuels Production through Simultaneous Cracking-Deoxygenation of Palm Oil. Bulletin of Chemical Reaction Engineering & Catalysis, 18(2), 222–237. https://doi.org/10.9767/bcrec.17974
  23. Istadi, I., Riyanto, T., Buchori, L., Anggoro, D. D., Gilbert, G., Meiranti, K. A., & Khofiyanida, E. (2020). Enhancing Brønsted and Lewis Acid Sites of the Utilized Spent RFCC Catalyst Waste for the Continuous Cracking Process of Palm Oil to Biofuels. Industrial & Engineering Chemistry Research, 59(20), 9459–9468. https://doi.org/10.1021/acs.iecr.0c01061
  24. Istadi, I., Riyanto, T., Khofiyanida, E., Buchori, L., Anggoro, D. D., Sumantri, I., Putro, B. H. S., & Firnanda, A. S. (2021). Low-oxygenated biofuels production from palm oil through hydrocracking process using the enhanced Spent RFCC catalysts. Bioresource Technology Reports, 14, 100677. https://doi.org/10.1016/j.biteb.2021.100677
  25. Istadi, I., Riyanto, T., Salsabilla, A., & Qotrunnada, N. A. (2025). Comparative study on the characteristics and performance of Ni-impregnated and non-impregnated natural zeolite catalysts in the hydrocracking of palm oil to biofuels. Journal of Chemical Engineering Research Progress, 2(2), 254–262. https://doi.org/10.9767/jcerp.20527
  26. Kadarwati, S., & Wahyuni, S. (2015). Characterization and Performance Test of Palm Oil Based Bio-Fuel Produced Via Ni/Zeolite-Catalyzed Cracking Process. International Journal of Renewable Energy Development, 4(1), 32–38. https://doi.org/10.14710/ijred.4.1.32-38
  27. Karim, T. M., Toyoda, H., Sawada, M., Zhao, L., Wang, Y., Xiao, P., Wang, L., Huang, J., & Yokoi, T. (2024). Aluminum distribution on the microporous and hierarchical ZSM-5 zeolite catalysts and its effect on catalytic performance. Chem & Bio Engineering, 1(9), 805–816. https://doi.org/10.1021/cbe.4c00117
  28. Li, T., Krumeich, F., Chen, M., Ma, Z., & Van Bokhoven, J. A. (2020). Defining aluminum-zoning during synthesis of ZSM-5 zeolites. Physical Chemistry Chemical Physics, 22(2), 734–739. https://doi.org/10.1039/C9CP05423E
  29. Liu, H., Liu, G., Zhang, Z., Si, N., Wang, X., Chang, P., & Barakos, G. (2025). Improved characterization of the pore size distribution in full and across scale by a fractal strategy. Physics of Fluids, 37(4), 046602. https://doi.org/10.1063/5.0260442
  30. Long, F., Zhai, Q., Liu, P., Cao, X., Jiang, X., Wang, F., Wei, L., Liu, C., Jiang, J., & Xu, J. (2020). Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel. Renewable Energy, 157, 1072–1080. https://doi.org/10.1016/j.renene.2020.05.117
  31. Mamman, J. T., Toyoda, H., Sawada, M., Zhao, L., Wang, Y., Xiao, P., Wang, L., Huang, J., & Yokoi, T. (2022). Aluminum distribution on the microporous and hierarchical ZSM-5 zeolite catalysts and its effect on catalytic performance. Journal of Porous Materials, 29(5), 1349–1362. https://doi.org/10.1007/s10934-022-01239-9
  32. Mokrzycki, Ł., Sulikowski, B., & Olejniczak, Z. (2009). Properties of Desilicated ZSM-5, ZSM-12, MCM-22 and ZSM-12/MCM-41 Derivatives in Isomerization of α-Pinene. Catalysis Letters, 127(3–4), 296–303. https://doi.org/10.1007/s10562-008-9678-z
  33. Mortensen, P. M., Grunwaldt, J.-D., Jensen, P. A., Knudsen, K. G., & Jensen, A. D. (2011). A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General, 407(1–2), 1–19. https://doi.org/10.1016/j.apcata.2011.08.046
  34. Murzin, D. (2020). Engineering catalysis (2nd edition). De Gruyter. https://doi.org/10.1515/9783110614435
  35. Nasikin, M., Susanto, B.H., Hirsaman, M.A., dan Wijanarko, A., (2009), Bio-gasoline from Palm Oil by Simultaneous Cracking and Hydrogenation Reaction over NiMo/zeolite Catalyst, World Applied Sciences Journal, 5 (Special Issue for Environment), 74-79
  36. Oliveira, D. S., Lima, R. B., Pergher, S. B. C., & Caldeira, V. P. S. (2023). Hierarchical Zeolite Synthesis by Alkaline Treatment: Advantages and Applications. Catalysts, 13(2), 316. https://doi.org/10.3390/catal13020316
  37. Oruji, S., Khoshbin, R., & Karimzadeh, R. (2018). Preparation of hierarchical structure of Y zeolite with ultrasonic-assisted alkaline treatment method used in catalytic cracking of middle distillate cut: The effect of irradiation time. Fuel Processing Technology, 176, 283–295. https://doi.org/10.1016/j.fuproc.2018.03.035
  38. Panarmasar, N., Hinchiranan, N., & Kuchonthara, P. (2022). Catalytic hydrotreating of palm oil for bio-jet fuel production over Ni supported on mesoporous zeolite. Materials Today: Proceedings, 57, 1082–1087. https://doi.org/10.1016/j.matpr.2021.09.385
  39. Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen, C. H., & Groen, J. C. (2008). Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 37(11), 2530. https://doi.org/10.1039/b809030k
  40. Riyanto, T., Istadi, I., Jongsomjit, B., Anggoro, D. D., Pratama, A. A., & Faris, M. A. A. (2021). Improved Brønsted to Lewis (B/L) Ratio of Co- and Mo-Impregnated ZSM-5 Catalysts for Palm Oil Conversion to Hydrocarbon-Rich Biofuels. Catalysts, 11(11), 1286. https://doi.org/10.3390/catal11111286
  41. Roth, W. J., Gil, B., Tarach, K. A., & Góra-Marek, K. (2025). Top-down engineering of zeolite porosity. Chemical Society Reviews, 54(13), 7484–7560. https://doi.org/10.1039/D5CS00319A
  42. Seifi, H., & Sadrameli, S. M. (2016). Improvement of renewable transportation fuel properties bydeoxygenation process using thermal and catalytic cracking of triglycerides and their methyl esters. Applied Thermal Engineering, 100, 1102–1110. https://doi.org/10.1016/j.applthermaleng.2016.02.022
  43. Shi, K., Santiso, E. E., & Gubbins, K. E. (2021). Current advances in characterization of nano-porous materials: Pore size distribution and surface area. In Porous Materials (pp. 315–340). Springer. https://doi.org/10.1007/978-3-030-65991-2_12
  44. Smith, B. (2018). Infrared Spectral Interpretation: A Systematic Approach (1st ed.). CRC Press. https://doi.org/10.1201/9780203750841
  45. Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. https://doi.org/10.1039/c1cy00150g
  46. Verboekend, D., Vilé, G., & Pérez-Ramírez, J. (2012). Mesopore Formation in USY and Beta Zeolites by Base Leaching: Selection Criteria and Optimization of Pore-Directing Agents. Crystal Growth & Design, 12(6), 3123–3132. https://doi.org/10.1021/cg3003228
  47. Wang, Z., Gao, L., Zhong, X., Zhang, Y., Shakeri, M., Zhang, X., & Zhang, B. (2025). Accurately tuning the pore size and acidity of mesoporous zeolites for enhancing the catalytic hydrocracking of polypropylene. Journal of Materials Chemistry A, 13(2875–2883). https://doi.org/10.1039/D4TA07329K
  48. Yin, X., Li, Z., Wang, S., Chu, N., Yang, J., & Wang, J. (2015). Hydrothermal synthesis of hierarchical zeolite T aggregates using tetramethylammonium hydroxide as single template. Microporous and Mesoporous Materials, 201, 247–257. https://doi.org/10.1016/j.micromeso.2014.09.018
  49. Zheng, Z., Wang, J., Wei, Y., Liu, X., Yu, F., & Ji, J. (2019). Effect of La-Fe/Si-MCM-41 catalysts and CaO additive on catalytic cracking of soybean oil for biofuel with low aromatics. Journal of Analytical and Applied Pyrolysis, 143, 104693. https://doi.org/10.1016/j.jaap.2019.104693

Last update:

No citation recorded.

Last update: 2026-02-03 03:32:30

No citation recorded.