skip to main content

View PDF Download fulltext

Identification and comparison of pyrolysis products of different biomasses from agro-industrial using TGA-FTIR and Py-GC/MS

1Faculty of Chemical Engineering, Central University of Ecuador, Quito, Ecuador

2Geological and Energy Research Institute, Quito, Ecuador

3Department of Chemical Engineering, Alicante University, San Vicente del Raspeig, Spain

4 Faculty of Chemical Engineering, Central University of Ecuador, Quito, Spain

5 Empresa Pública de Hidrocarburos EP PETROECUADOR, Quito, Ecuador

View all affiliations
Received: 23 Sep 2025; Revised: 16 Dec 2025; Accepted: 15 Jan 2026; Available online: 27 Jan 2027; Published: 1 Mar 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The valorization of agro-industrial residues is crucial for the circular bioeconomy. This study elucidates the thermal decomposition mechanisms and volatile product distribution of four distinct Ecuadorian biomasses: balsa wood (Bl), sugarcane bagasse (Bg), cocoa husks (Cc), and coffee husks (Cf), TGA kinetics. TGA and DTG profiles showed the characteristic multistage degradation of lignocellulosic materials, with maximum mass-loss rates occurring between 320 and 360 °C depending on the biomass. Bl and Bg, which contained the highest cellulose fractions (33–35%), exhibited sharp DTG peaks and higher decomposition temperatures. In contrast, Cc and Cf, both lignin-rich residues (up to 42–47%)—displayed broader degradation profiles, delayed devolatilization, and higher char yields (>26%). Kinetic evaluation confirmed these trends, with cellulose-rich samples showing higher activation energies than lignin-dominated husks. The in-situ FTIR monitoring revealed clear compositional differences in evolved gases: Bl and Bg generated higher proportions of CO and carbonyl-containing volatiles, whereas Cc and Cf produced more CO₂ and phenolic signals associated with lignin fragmentation. Py-GC/MS supported these observations, identifying dominant aldehydes and alcohols in Bl and Bg, while Cc and Cf produced elevated levels of phenols, guaiacols, and nitrogenous aromatics. Overall, the integration of TGA–FTIR and Py-GC/MS allowed establishing direct correlations between lignocellulosic composition, kinetic parameters, and volatile speciation. Unlike previous studies that report either kinetic parameters or volatile fingerprints separately, this work establishes direct kinetic–molecular correlations between activation energy domains and dominant volatile families for Ecuadorian biomasses. The results indicate that balsa wood is a promising feedstock for generating oxygenated chemical intermediates, whereas coffee husk shows strong potential for biochar-oriented processes due to its high lignin content and char yield. These findings expand the thermochemical characterization of Ecuadorian agro-industrial residues and support their selective valorization through pyrolysis.

Keywords: Agro-industrial residues; Pyrolysis; Volatile products; TG; FTIR; GCMS

Article Metrics:

  1. Aho, A. K. (2008). Pyrolysis of softwood carbohydrates in a fluidized bed reactor. Molecular Sciences, 9(9), 1665-1675. https://doi.org/10.3390/ijms9091665
  2. Aleida, J. S. (2018). Composition and Thermogravimetric Characterization of Components of Venezuelan Fermented and dry Trinitario Cocoa Beans (Theobroma cacao L.): Whole Beans, Peeled Beans and Shells. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 41, 41-47. Retrieved from https://api.semanticscholar.org/CorpusID:196884814
  3. Alghooneh, A. A. (2017). Characterization of cellulose from coffee silverskin. Food Properties, 20(11), 2830-2843. https://doi.org/10.1080/10942912.2016.1253097
  4. Ansari, K. B. (2021). Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review. Renewable and Sustainable Energy Reviews, 150, 111454. https://doi.org/10.1016/j.rser.2021.111454
  5. Arun P, S., & Muraleedharan , C. (2025). Thermochemical conversion of coffee husk: a study on thermo-kinetic analysis, volatile composition and ash behavior. Biomass Conv. Bioref, 15, 20723–20740. https://doi.org/10.1007/s13399-025-06676-5
  6. Bassilakis, R. &. (2001). TG-FTIR analysis of biomass pyrolysis. Fuel, 1765-1786. https://doi.org/10.1016/S0016-2361(01)00061-8
  7. Biagini, E. &. (2006). Devolatilization of Biomass Fuels and Biomass Components Studied by TG/FTIR Technique. Industrial & Engineering Chemistry Research, 45(13), 4486–4493. https://doi.org/10.1021/ie0514049
  8. Bilba, K. &. (1996). Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. ELSEVIER, 38, 61-73. https://doi.org/10.1016/S0165-2370(96)00952-7
  9. Carrillo, F. X. (2004). Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 2229-2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003
  10. Changjuna, L. W. (2014). Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 43(22), 7594 - 7623. https://doi.org/10.1039/c3cs60414d
  11. Cutiño, E. M.-M. (2011). ANÁLISIS TERMOGRAVIMETRICO Y TÉRMICO. Tecnología Química, 31(2), 11
  12. de Lucas Herguedas, A., & Rodríguez García, E. (2012). Biomasa, biocombustibles y sostenibilidad. (E. Sanz González, & M. Sánchez Martín, Eds.) España: Instituto Universitario de Investigación en Gestión Forestal Sostenible. ISBN: 978‐84‐931891‐5‐0. https://www.researchgate.net/profile/Ana-De-Lucas/publication/260383181_Biomasa_biocombustibles_y_sostenibilidad/links/54201c510cf241a65a1b01e5/Biomasa-biocombustibles-y-sostenibilidad.pdf#:~:text=Esta%20publicaci%C3%B3n%20es%20el%20resultado,innovaci%C3%B3n%20aplicada%20y%20transferencia%20del
  13. Dellarose, B. F.-M.-F. (2021). Pirólisis lenta del bagazo de caña de azúcar para la producción de carbón vegetal y el potencial de su subproducto para la protección de la madera. Materiales Renovables, 9(1), 97-117. https://doi.org/10.32604/jrm.2021.013147
  14. Dhyani, V., & Bhaskar, T. (2019). Pyrolysis of Biomass. Biomass, Biofuels, Biochemicals, 217-244. https://doi.org/10.1016/B978-0-12-816856-1.00009-9
  15. Dick, D. T. (2020). Pyrolysis of waste tyre for high-quality fuel products: A review. AIMS Energy, 8(5), 869–895. https://doi.org/10.3934/energy.2020.5.869
  16. El-Azazy, M. A.-S.-S. (2022). Application of Infrared Spectroscopy in the Characterization of Lignocellulosic Biomasses Utilized in Wastewater Treatment. Infrared Spectroscopy. https://doi.org/10.5772/intechopen.108878
  17. El-Sayed, S., & Khairy, M. (2015). Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. 6(3-4), 157-170. https://doi.org/10.1080/17597269.2015.1065590
  18. Escalante, J., Chen, W. H., Tabatabaei, M., Hoang, A., Kwon, E., Lin, K.-Y., & Saravanakumar, A. (2022). Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews, 169(1), 112914. https://doi.org/10.1016/j.rser.2022.112914
  19. ESIN Consultora S.A. (2014). Atlas Bioenergético del Ecuador (primera ed.). Ecuador: ESIN Consultora S.A. Retrieved from https://www.mediafire.com/file/17dz5lbnwloiea6/ATLAS+BIOENERGETICO+DEL+ECUADOR.zip
  20. Fagbemi, L. K. (2001). Pyrolysis products from different biomasses: application to the thermal cracking of tar. Applied Energy, 69(4), 293-306. https://doi.org/10.1016/S0306-2619(01)00013-7
  21. Fardhyantil, D. S. (2019). Phenolic compound separation from bio-oil produced from pyrolysis of coffee shell at 700°C using liquid-liquid extraction. Physics, 1444(1), 1444. https://doi.org/10.1088/1742-6596/1444/1/012002
  22. Garrido, M., Font, R., & Conesa, J. (2016). Kinetic study and thermal decomposition behavior of viscoelastic memory foam. Energy Conversion and Management, 119, 327-337. https://doi.org/10.1016/j.enconman.2016.04.048
  23. Ge, X., Chang, C., Zhang, L., Cui, S., Luo, X., Hu, S., . . . Li, Y. (2018). Chapter Five - Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application. Advances in Bioenergy, 3(1), 161-213. https://doi.org/10.1016/bs.aibe.2018.03.002
  24. Gogoi, D. M. (2023). A Comprehensive Review on “Pyrolysis” for Energy Recovery. BioEnergy Research, 145–155. https://doi.org/10.1007/s12155-023-10568-9
  25. Hergert, H. L. (1960). Infrared Spectra of Lignin and Related Compounds. II. Conifer Lignin and Model Compounds. Organic Chemistry, 25(3), 405–413. https://doi.org/10.1021/jo01073a026
  26. Huertas, d. l. (2022). Pyrolysis-GC/MS, A Powerful Analytical Tool for Additives and Polymers Characterization. Recent Perspectives in Pyrolysis Research, 1-20. https://www.intechopen.com/chapters/80292
  27. Jackels, S. C. (2014). GCMS Investigation of Volatile Compounds in Green Coffee Affected Green Coffee Affected. Agricultutal and Food Chemestry, 62(1), 10222−10229. https://doi.org/10.1021/jf5034416
  28. Kumar, M. N. (2022). Pyrolysis of Sugarcane (Saccharum officinarum L.) Leaves and Characterization of Products. ACS Omega, 7(32), 28052–28064. https://doi.org/10.1021/acsomega.2c02076
  29. Leng, E. H. (2023). Interactions between cellulose and lignin during pyrolysis: Evolutions of condensed-phase functional groups and gas-phase volatile fraction. Industrial Crops and Products, 205, 117518. https://doi.org/10.1016/j.indcrop.2023.117518
  30. Li, B. W. (2014). Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: Kinetics and products. Analytical and Applied Pyrolysis, 295-300. https://doi.org/10.1016/j.jaap.2014.04.002
  31. Liu, Q. &. (2020). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Analytical and Applied Pyrolysis, 82(1), 170-177. https://doi.org/10.1016/j.jaap.2008.03.007
  32. Liu, Q., Wang, S., Zheng, Y., Lou, Z., & Cen, K. (2008). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Analytical and Applied Pyrolysis, 82(1), 170-177. https://doi.org/10.1016/j.jaap.2008.03.007
  33. Lu, Q. T.-y.-y.-q. (2016). Pyrolysis mechanism of holocellulose-based monosaccharides: The formation of hydroxyacetaldehyde. Analytical and Applied Pyrolysis, 120, 15-26. https://doi.org/10.1016/j.jaap.2016.04.003
  34. Ma, M. X. (2014). Application of Pyrolysis Gas Chromatography/Mass Spectrometry in Lacquer Research: A Review. Polymers, 132-144
  35. Mahmuda, M. A. (2021). Sugarcane bagasse - A source of cellulosic fiber for diverse applications. Heliyon, 7(8), e07771. https://doi.org/10.1016/j.heliyon.2021.e07771
  36. Manals, C. E.-M. (2018). Caracterización de la biomasa vegetal cascarilla de café. Tecnología Química, 8. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/3239/2869
  37. Manals-Cutiño, E. y.-M.-T. (2015). Caracterización del bagazo de caña como biomada vegetal. Tecnología Química, XXXV(2), 179-192. Retrieved from https://www.redalyc.org/articulo.oa?id=445543787003
  38. Mansur, D. &. (2014). Conversion of cacao pod husks by pyrolysis and catalytic reaction to produce useful chemicals. Biomass and Bioenergy, 66(1), 275-285. https://doi.org/10.1016/j.biombioe.2014.03.065
  39. Molto, B. J. (2011). Descomposición térmica de residuos textiles: estudio cinético y formación de contaminantes. Alicante: Universidad de Alicante. https://rua.ua.es/server/api/core/bitstreams/6cde511e-feb2-4055-8839-78926e25da2e/content
  40. Moncayoa, G. y.-M. (2018). Caracterización de las propiedades mecánicas de lamadera de balsa (Ochroma Pyramidale) Ecuatoriana. Congreso de Ciencia y Tecnología ESPE, 5. https://journal.espe.edu.ec/ojs/index.php/cienciaytecnologia/es/article/view/788
  41. Munoz, M. &. (2024). Effect of alkaline catalysts on the valorization of sugarcane bagasse. Industrial Crops and Products, 211, 118225. https://doi.org/10.1016/j.indcrop.2024.118225
  42. Muñoz, M. &. (2024). Effect of alkaline catalysts on the valorization of sugarcane bagasse via Pirolysis. Industrial Crops & Products, 211, 118225. https://doi.org/10.1016/j.indcrop.2024.118225
  43. Najafi, H., Sani, A., & Sobati , M. (2024). Thermogravimetric and thermo kinetic analysis of sugarcane bagasse pith: a comparative evaluation with other sugarcane residues. Scientific Reports, 14(1), 2076. https://doi.org/10.1038/s41598-024-52500-x
  44. Ortiz de Bertorelli, L. (. (2004). Efecto del secado del sol sobre la calidad del grano fermentado de cacao. Agronomía Tropical, 1-12. https://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0002-192X2004000100003
  45. Ouedraogo, M. &. (2022). Characterization of sugar cane bagasse ash from Burkina Faso for cleaner. Results in Materials, 14, 100275. https://doi.org/10.1016/j.rinma.2022.100275
  46. Ouensanga, A., & Picard, C. (1988). Thermal degradation of sugar cane bagasse. Thermochimica Acta, 89-97. https://doi.org/10.1016/0040-6031(88)87213-7
  47. Rathee, R. S. (2023). Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. Materials, 16, 4793. https://doi.org/10.3390/ma16134793
  48. Patiño-Velasco, M. y.-F.-C. (2016). Determinación del contenido de humedad en granos de café pergamino seco utilizando SPECKLE DINÁMICO. Biotecnología en el sector Agropecuario y Agroindustrial, 84-91. https://doi.org/10.18684/BSAA(14)84-91
  49. Pielsticker, S. G. (2021). Flash Pyrolysis Kinetics of Extracted Lignocellulosic Biomass Components. Bioenergy and Biofuels, 9, 737011. https://doi.org/10.3389/fenrg.2021.737011
  50. Poyilil, S. &. (2022). Physico-chemical characterization study of coffee husk for feasibility assessment in fluidized bed gasification process. Environmental Science and Pollution Research, 29(1), 51041–51053. https://doi.org/10.1007/s11356-021-17048-7
  51. Prete, P. &. (2022). Glycidol syntheses and valorizations: boosting the glycerol biorefinery. Current Opinion in Green and Sustainable Chemistry, 35, 100624. https://doi.org/10.1016/j.cogsc.2022.100624
  52. Radmanesh, R. &. (2006). A unified lumped approach in kinetic modeling of biomass pyrolysis. Fuel, 85(9), 1211-1220. https://doi.org/10.1016/j.fuel.2005.11.021
  53. Raveendran, K. A. (1996). Pyrolysis characteristics of biomass and biomass components. Fuel, 987-998
  54. Reed, T. B., & Siddhartha, G. (1994). Atlas of thermal data of biomass and other fuels—a report on the forthcoming book. Biomass and Bioenergy, 1(6), 143-145. https://doi.org/10.1016/0961-9534(94)00053-V
  55. Reis, R. S. (2020). Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. Material Research and Technology, 9(4), 9412-9421. https://doi.org/10.1016/j.jmrt.2020.05.099
  56. Rezende, C. d. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels volume, 4, 54. https://doi.org/10.1186/1754-6834-4-54
  57. Ricciardi, M. &. (2017). Glycidol, a Valuable Substrate for the Synthesis of Monoalkyl Glyceryl Ethers: A Simplified Life Cycle Approach. ChemSusChem, 10(10), 2291-2300. https://doi.org/10.1002/cssc.201700525
  58. Ríos, F. M. (2013). Modelización de procesos degradativos a partir de datos termogravimétricos. Coruña: Universidad de Coruña. https://dialnet.unirioja.es/servlet/tesis?codigo=39633
  59. Salazar, H. A.-H.-H., & Aburto, J. (2015). Principales componentes químicos de la madera de Ceiba pentandra, Hevea brasiliensis y Ochroma pyramidale. Scielo, 131-146. https://doi.org/10.21829/myb.2015.212450
  60. Saldarriaga, J., Aguado, R., Pablos, A., Amutio, M., Olazar, M., & Bilbao, J. (2015). Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel, 140(15), 744-751. https://doi.org/10.1016/j.fuel.2014.10.024
  61. Sangronis, E. S. (2014). Cascarilla de cacao venezolano como materia prima de infusiones. ALAN, 64(2), 123-130. https://ve.scielo.org/scielo.php?pid=S0004-06222014000200007&script=sci_abstract
  62. Siddiqi, H. &. (2020). A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste. Energy, 204(1), 117933. https://doi.org/10.1016/j.energy.2020.117933
  63. Siddiqi, H. M. (2022). In-situ and ex-situ co-pyrolysis studies of waste biomass with spent motor oil: Elucidating the role of physical inhibition and mixing ratio to enhance fuel quality. Bioresource Technology, 358, 127364. https://doi.org/10.1016/j.biortech.2022.127364
  64. Sierra, A. I. (2009). Análisis Instrumental. La Coruña-España: Netbiblo
  65. Soares, A. P. (2020). Thermal evaluation of composites from cofee capsules residue with sugarcane bagasse by TG/DTA and DMA. Thermal Analysis and Calorimetry. 142(4):1-10 https://doi.org/10.1007/s10973-020-10012-6
  66. TranVan, L. &. (2014). Thermal decomposition kinetics of balsa wood: Kinetics and degradation mechanisms comparison between dry and moisturized materials. Polymer Degradation and Stability, 110(1), 208 - 215. https://doi.org/10.1016/j.polymdegradstab.2014.09.004
  67. Varma, A. K. (2017). Pyrolysis of sugarcane bagasse in semi batch reactor: Effects of process parameters on product yields and characterization of products. Industrial Crops and Products, 704-717. https://doi.org/10.1016/j.indcrop.2016.11.039
  68. Wan, L., Wang, H., Mo, X., Wang, Y., Song, L., Liu, L., & Liang, W. (2024). Applying HS-SPME-GC-MS combined with PTR-TOF-MS to analyze the volatile compounds in coffee husks of Coffea arabica with different primary processing treatments in Yunnan. LWY, 191(1), 115675. https://doi.org/10.1016/j.lwt.2023.115675
  69. Wang, G. Y. (2020). A Review of Recent Advances in Biomass Pyrolysis. Energy Fuels, 34(12), 15557–15578. https://doi.org/10.1021/acs.energyfuels.0c03107
  70. Wang, Y., & Wu, J. J. (2023). Thermochemical conversion of biomass: Potential future prospects. Renewable and Sustainable Energy Reviews, 187, 113754. https://doi.org/10.1016/j.rser.2023.113754
  71. White, J. E. (2011). Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis, 91(1), 1-33. https://doi.org/10.1016/j.jaap.2011.01.004
  72. Xing, R. &. (2011). roduction of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic ethanol industries. Energy & Environmental Science, 6. https://doi.org/10.1039/C1EE01022K
  73. Yang, H. &. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 1781-1788. https://doi.org/10.1016/j.fuel.2006.12.013
  74. Yang, Z. &. (2019). Thermal Characteristics and Kinetics of Waste Camellia oleifera Shells by TG–GC/MS. ACS Omega, 4(6), 10370–10375. https://doi.org/10.1021/acsomega.9b01013

Last update:

No citation recorded.

Last update: 2026-02-02 02:20:54

No citation recorded.