skip to main content

View PDF Download fulltext

Performance analysis of flow channel collector for photovoltaic thermal system

1Human Resource Development Center for Oil and Gas, Ministry of Energy and Mineral Resources. Jl. Sorogo No.1 Cepu, Blora, Indonesia

2Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990 Kuala Lumpur, Malaysia

Received: 6 Oct 2025; Revised: 6 Dec 2025; Accepted: 26 Dec 2025; Available online: 13 Jan 2026; Published: 1 Mar 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Solar energy has seen the most significant development in the past decade. Electricity and hot water production are the two most common uses of solar energy. A photovoltaic (PV) system is a popular method for generating electricity from solar energy. However, PV systems are known for their low efficiency, which reduces further as the PV cell temperature rises. The photovoltaic-thermal (PVT) system combines a PV system with a thermal collector to provide dual benefits, namely power generation and hot water production. However, PVT system research often employs a constant flow (CF) strategy in which water is continually cycled throughout the experiment, making it inapplicable. In comparison, the constant collection temperature (CCT) scheme is a more feasible approach, but its impact on PVT system performance has received less attention. This study compares a flow channel PVT system using both CF and CCT strategies. The results show that the CF scheme achieved a higher maximum thermal efficiency of 35.05%, while the CCT scheme reached 17.89%. The CCT method can also maintain the optimum water temperature despite changing radiation circumstances. The PVT system outperforms traditional PV panels regarding electricity efficiency, with a maximum improvement of 0.89% and 0.96% utilizing the CF and CCT schemes, respectively. These results show that PVT systems with CCT schemes that use less energy for pumping outperform PV panels in terms of power production and electricity efficiency.

Keywords: solar energy; thermal photovoltaic system; constant flow; constant collection temperature; flow channel; power generation
Funding: UM Power Energy Dedicated Advanced Centre (UMPEDAC) and the Higher Institution Centre of Excellence (HICoE) Program Research Grant, UMPEDAC - 2020

Article Metrics:

  1. Al-Aasama, A. B., Ibrahim, A., Syafiq, U., Sopian, K., Abdulsahib, B. M., & Dayer, M. (2023). Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes. International Journal of Renewable Energy Development, 12(5), 891–901. https://doi.org/10.14710/ijred.2023.54345
  2. Al-Otaibi, A., Hatatab, A. Y., Alruqi, M., Alabdullatief, A., & Essa, M. A. (2024). Optimization of the PVT performance with various orientations of jets and MFFNN-RSA prediction model for smart buildings. International Journal of Renewable Energy Development. https://doi.org/10.61435/ijred.2024.60129
  3. Al-Waeli, A. H. A., Kazem, H. A., Yousif, J. H., Chaichan, M. T., & Sopian, K. (2020). Mathematical and neural network modeling for predicting and analyzing of nanofluid-nano PCM photovoltaic thermal systems performance. Renewable Energy, 145, 963–980. https://doi.org/10.1016/j.renene.2019.06.099
  4. Bashir, M., Ali, H., Amber, K., Bashir, M., Ali, H., Imran, S., & Kamran, M. (2018). Performance investigation of photovoltaic modules by back surface water cooling. Thermal Science, 22(6 Part A), 2401–2411. https://doi.org/10.2298/tsci160215290b
  5. Ceylan, İ., Gürel, A. E., Demircan, H., & Aksu, B. (2014). Cooling of a photovoltaic module with temperature controlled solar collector. Energy and Buildings, 72, 96–101. https://doi.org/10.1016/j.enbuild.2013.12.058
  6. Coventry, J. S., & Lovegrove, K. (2003). Development of an approach to compare the ‘value’ of electrical and thermal output from a domestic PV/thermal system. Solar Energy, 75(1), 63–72. https://doi.org/10.1016/s0038-092x(03)00231-7
  7. Dubey, S., & Tay, A. A. O. (2013). Testing of two different types of photovoltaic–thermal (PVT) modules with heat flow pattern under tropical climatic conditions. Energy for Sustainable Development, 17(1), 1–12. https://doi.org/10.1016/j.esd.2012.09.001
  8. Fayaz, H., Rahim, N. A., Hasanuzzaman, M., Rivai, A., & Nasrin, R. (2019). Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Solar Energy, 179, 135–150. https://doi.org/10.1016/j.solener.2018.12.057
  9. Fuentes, E., Arce, L., & Salom, J. (2018). A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renewable and Sustainable Energy Reviews, 81, 1530–1547. https://doi.org/10.1016/j.rser.2017.05.229
  10. Hasanuzzaman, M., Malek, A. B. M. A., Islam, M. M., Pandey, A. K., & Rahim, N. A. (2016). Global advancement of cooling technologies for PV systems: A review. Solar Energy, 137, 25–45. https://doi.org/10.1016/j.solener.2016.07.010
  11. Herrando, M., Wang, K., Huang, G., Otanicar, T., Mousa, O. B., Agathokleous, R. A., Ding, Y., Kalogirou, S., Ekins-Daukes, N., Taylor, R. A., & Markides, C. N. (2023). A review of solar hybrid photovoltaic-thermal (PV-T) collectors and systems. Progress in Energy and Combustion Science, 97, 101072. https://doi.org/10.1016/j.pecs.2023.101072
  12. Hormozi Moghaddam, M., & Karami, M. (2022). Heat transfer and pressure drop through mono and hybrid nanofluid‐based photovoltaic‐thermal systems. Energy Science & Engineering, 10(3), 918–931. https://doi.org/10.1002/ese3.1073
  13. Hussin, M. Z., Hamid, M. H. A., Zain, Z. M., & Rahman, R. A. (2010). An evaluation data of solar irradiation and dry bulb temperature at Subang under Malaysian climate. 2010 IEEE Control and System Graduate Research Colloquium (ICSGRC 2010), 55–60. https://doi.org/10.1109/ICSGRC.2010.5562521
  14. IRENA. (2019). Future of solar photovoltaic : deployment, investment, technology, grid integration and socio-economic aspects (Elisa Asmelash, Gayathri Prakashwith, Rodrigo Leme, Giacomo Gallina, Dolf Gielen, & Ricardo Gorini, Eds.). International Renewable Energy Agency
  15. Jha, P., Das, B., Gupta, R., Mondol, J. D., & Ehyaei, M. A. (2023). Review of recent research on photovoltaic thermal solar collectors. Solar Energy, 257, 164–195. https://doi.org/10.1016/j.solener.2023.04.004
  16. Ji, J., Han, J., Chow, T.-T., Han, C., Lu, J., & He, W. (2006). Effect of flow channel dimensions on the performance of a box-frame photovoltaic/thermal collector. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(7), 681–688. https://doi.org/10.1243/09576509jpe316
  17. Kern, G. (1999). SunSine{trademark}300: Manufacture of an AC Photovoltaic Module; Final Report Phases I & II; 25 July 1995-30 June 1998. Office of Scientific and Technical Information (OSTI). https://doi.org/10.2172/6800
  18. Kline, S. J. (1953). Describing Uncertainties in Single-Sample Experiments. Mechanical Engineering, 75, 3–8. https://api.semanticscholar.org/CorpusID:115904659
  19. Kristi, Ant. A., Susanto, E., Risdiyanto, A., Junaedi, A., Darussalam, R., Rachman, N. A., & Fudholi, A. (2025). Energy analysis of active photovoltaic cooling system using water flow. International Journal of Electrical and Computer Engineering (IJECE), 15(1), 1. https://doi.org/10.11591/ijece.v15i1.pp1-14
  20. Laitala, K., Boks, C., & Klepp, I. G. (2011). Potential for environmental improvements in laundering. International Journal of Consumer Studies, 35(2), 254–264. https://doi.org/10.1111/j.1470-6431.2010.00968.x
  21. Mamun, M. A. A., Islam, M. M., Hasanuzzaman, M., & Selvaraj, J. (2022). Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment, 3(3), 278–290. https://doi.org/10.1016/j.enbenv.2021.02.001
  22. Mawoli, M., Yayha, H. N., Danshehu, B. G., Muhammad, M. L., & Bature, A. S. (2020). Development and Performance Evaluation of Solar Photovoltaic Module’s Surface-to-Rear Temperature Controlled Valve for Cooling Application. Nigerian Journal of Technological Development, 17(1), 20–27. https://doi.org/10.4314/njtd.v17i1.3
  23. Mishra, R. K., & Tiwari, G. N. (2013). Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode. Solar Energy, 90, 58–67. https://doi.org/10.1016/j.solener.2012.12.022
  24. Nahar, A., Hasanuzzaman, M., & Rahim, N. A. (2017). Numerical and experimental investigation on the performance of a photovoltaic thermal collector with parallel plate flow channel under different operating conditions in Malaysia. Solar Energy, 144, 517–528. https://doi.org/10.1016/j.solener.2017.01.041
  25. Rahmanian, S., & Hamzavi, A. (2020). Effects of pump power on performance analysis of photovoltaic thermal system using CNT nanofluid. Solar Energy, 201, 787–797. https://doi.org/10.1016/j.solener.2020.03.061
  26. Rawat, L., Bisht, T. S., & Naithani, D. C. (2021). Plant Disease Management in Organic Farming System: Strategies and Challenges. In Emerging Trends in Plant Pathology (pp. 611–642). Springer Singapore. https://doi.org/10.1007/978-981-15-6275-4_27
  27. Salem Ahmed, M., Mohamed, A. S. A., & Maghrabie, H. M. (2019). Performance Evaluation of Combined Photovoltaic Thermal Water Cooling System for Hot Climate Regions. Journal of Solar Energy Engineering, 141(4). https://doi.org/10.1115/1.4042723
  28. Selvaraj, J., Tharmarajah, N., Faeshol Umam, M., Kumar, L., Hasanuzzaman, Md., Abd Rahim, N., & Abdulmuhsen Saleh Basuhaib, A. (2023). Comparative Experimental Investigation on Front Cooling for Tempered Glass Photovoltaic Thermal System. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(3), 7245–7261. https://doi.org/10.1080/15567036.2023.2220663
  29. Şirin, C., Goggins, J., & Hajdukiewicz, M. (2023). A review on building-integrated photovoltaic/thermal systems for green buildings. Applied Thermal Engineering, 229, 120607. https://doi.org/10.1016/j.applthermaleng.2023.120607
  30. Tashtoush, B., & Al-Oqool, A. (2018). Factorial analysis and experimental study of water-based cooling system effect on the performance of photovoltaic module. International Journal of Environmental Science and Technology, 16(7), 3645–3656. https://doi.org/10.1007/s13762-018-2044-9
  31. Tiwari, A., Dubey, S., Sandhu, G. S., Sodha, M. S., & Anwar, S. I. (2009). Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes. Applied Energy, 86(12), 2592–2597. https://doi.org/10.1016/j.apenergy.2009.04.004
  32. Tiwari, A. K., Chatterjee, K., Agrawal, S., & Singh, G. K. (2023). A comprehensive review of photovoltaic-thermal (PVT) technology: Performance evaluation and contemporary development. Energy Reports, 10, 2655–2679. https://doi.org/10.1016/j.egyr.2023.09.043
  33. Tiwari, G. N., Meraj, Md., & Khan, M. E. (2018). Exergy analysis of N-photovoltaic thermal-compound parabolic concentrator (N-PVT-CPC) collector for constant collection temperature for vapor absorption refrigeration (VAR) system. Solar Energy, 173, 1032–1042. https://doi.org/10.1016/j.solener.2018.08.031
  34. Umam, M. F., Hasanuzzaman, M., & Abd Rahim, N. (2023). Experimental investigation and performance evaluation of spiral and serpentine collectors based photovoltaic thermal system in Peninsular Malaysia. Sustainable Energy Technologies and Assessments, 58, 103373. https://doi.org/10.1016/j.seta.2023.103373

Last update:

No citation recorded.

Last update: 2026-02-03 04:00:25

No citation recorded.