skip to main content

View PDF Download fulltext

Experimental and DFT investigation of LiFePO₄/graphene composites prepared via shear exfoliation route

1Department of Chemical Engineering, University of Riau, Pekanbaru, 28293, Indonesia

2Department of Electrical Engineering, University of Riau, Pekanbaru, 28293, Indonesia

3Department of Chemistry, Dulaty University, Taraz, 080000, Kazakhstan

4 Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Malaysia

5 Department of Chemical and Petroleum Engineering, United Arab Emirates University, 15551, United Arab Emirates

6 Battery Research Center of Green Energy, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan

7 Department of Natural Science Education, Universitas Sebelas Maret, Surakarta, 57126, Indonesia

8 Deparment of Physics, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh

View all affiliations
Received: 12 Oct 2025; Revised: 6 Dec 2025; Accepted: 28 Dec 2025; Available online: 18 Jan 2026; Published: 1 Mar 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The performance of LiFePO₄ (LFP) cathodes was successfully enhanced by incorporating two types of graphene obtained through green and low-cost liquid shear exfoliation processes. Commercial LFP was combined with few-layer graphene (FLG) and very few-layer graphene (VFLG), with compositions ranging from 0-4 wt.%. LFP, LFP/FLG, and LFP/VFLG, were characterized using electrochemical impedance spectroscopy (EIS), charge–discharge (CD), XRD, FTIR, and FESEM–EDX. Density functional theory (DFT) calculations were further employed to probe the electronic structure of LFP and an idealized LFP(001)/pristine-graphene interface as a baseline model for interfacial electronic coupling. DFT indicated interfacial charge redistribution and the emergence of C-2p π-derived states near the Fermi level, resulting in bandgap narrowing relative to pristine LFP and suggesting an additional electronic percolation pathway at the interface. Experimentally, EIS showed that VFLG reduced charge-transfer resistance and increased effective electrochemical conductivity, while FLG addition was associated with improved interfacial charge-transfer behavior inferred from EIS. CD tests at 0.5 C showed that the 4 wt.% FLG and 4 wt.% VFLG electrodes delivered the highest specific capacities of 29.98 mAh/g and 44.66 mAh/g, corresponding to increases of 81.9% and 170.5% compared to bare LFP. XRD and FTIR confirmed that LFP phase integrity was maintained, and FESEM–EDX revealed a uniform particle distribution with well-dispersed graphene networks. Overall, these results demonstrated that shear-exfoliated graphene effectively improved electronic connectivity and charge-transfer behavior in LFP cathodes, supported by consistent electrochemical measurements and electronic-structure insights from DFT.

Keywords: LiFePO4 cathode; Graphene composite; Electrochemical performances; DFT

Article Metrics:

  1. Amri, A., Hendri, Y. B., Sunarno, Taer, E., Saputro, S., Pambudi, Y. D. S., & Jiang, Z. T. (2024). Novel LiFePO4/very-few-layer-graphene (LFP/VFLG) composites to improve structural and electrochemical properties of lithium-ion battery cathode. Ceramics International, 50(11), 19806–19813. https://doi.org/10.1016/j.ceramint.2024.03.104
  2. Amri, A., Hendri, Y. B., Yin, C. Y., Rahman, M. M., Altarawneh, M., & Jiang, Z. T. (2021). Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solution. Chemical Engineering Science, 245, 1–13. https://doi.org/10.1016/j.ces.2021.116848
  3. Banhart, F., Kotakoski, J., & Krasheninnikov, A. V. (2011). Structural defects in graphene. ACS Nano, 5(1), 26–41. https://doi.org/10.1021/nn102598m
  4. Barsoukov, E., & Macdonald, J. R. (2005). Impedance Spectroscopy: Theory, Experiment, and Applications, (2nd ed.). John Wiley & Sons, Inc
  5. Bellache, K., Camara, M. B., & Dakyo, B. (2018). Characterization and electric behavior modeling of lithium- battery using temporal approach for parameters computing. 7th International Conference on Renewable Energy Research and Applications (ICRERA), 1330–1335. https://doi.org/10.1109/ICRERA.2018.8566742
  6. Bezerra, C. A. G., Davoglio, R. A., Biaggio, S. R., Bocchi, N., & Rocha-Filho, R. C. (2021). High-purity LiFePO4 prepared by a rapid one-step microwave-assisted hydrothermal synthesis. Journal of Materials Science, 56(16), 10018–10029. https://doi.org/10.1007/s10853-021-05914-1
  7. Chand, P., Kumar, S., Singh, V., & Singh, N. P. (2020). Investigation of the structural and electrical behavior of LiFePO4 as cathode material for energy storage application. Materials Today: Proceedings, 32, 483–486. https://doi.org/10.1016/j.matpr.2020.02.624
  8. Chen, T., Jin, Y., Lv, H., Yang, A., Liu, M., Chen, B., Xie, Y., & Chen, Q. (2020). Applications of lithium-ion batteries in grid-scale energy storage systems. Transactions of Tianjin University, 26(3), 208–217. https://doi.org/10.1007/s12209-020-00236-w
  9. Chen, Z., & Dahn, J. R. (2002). Reducing carbon in LiFePO[sub 4]/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of The Electrochemical Society, 149(9), A1184. https://doi.org/10.1149/1.1498255
  10. Cruz-Manzo, S., & Greenwood, P. (2020). An impedance model based on a transmission line circuit and a frequency dispersion Warburg component for the study of EIS in Li-ion batteries. Journal of Electroanalytical Chemistry, 871, 114305. https://doi.org/10.1016/j.jelechem.2020.114305
  11. Ding, R., Liu, H., Wang, L., & Liang, G. (2019). Effect of spray drying technological conditions on the performance of LiFePO4/C cathode materials with high energy density. Ionics, 25(12), 5633–5642. https://doi.org/10.1007/s11581-019-03162-7
  12. Dixit, A. (2019). Cathode Materials for Lithium Ion Batteries (LIBs): A Review on Materialsrelated aspects towards High Energy Density LIBs. SMC Bulletin, 10(3). https://doi.org/https://doi.org/10.48550/arXiv.2008.10896
  13. Eftekhari, A. (2017). LiFePO4/C nanocomposites for lithium-ion batteries. Journal of Power Sources, 343, 395–411. https://doi.org/10.1016/j.jpowsour.2017.01.080
  14. Fathollahi, F., Javanbakht, M., Omidvar, H., & Ghaemi, M. (2015). Improved electrochemical properties of LiFePO4/graphene cathode nanocomposite prepared by one-step hydrothermal method. Journal of Alloys and Compounds, 627, 146–152. https://doi.org/10.1016/j.jallcom.2014.12.025
  15. Fu, Y., Wei, Q., Zhang, G., Zhong, Y., Moghimian, N., Tong, X., & Sun, S. (2019). LiFePO4-graphene composites as high-performance cathodes for lithium-ion batteries: The impact of size and morphology of graphene. Materials, 12(6), 842. https://doi.org/10.3390/ma12060842
  16. Gan, L., Guo, H., Wang, Z., Li, X., Peng, W., Wang, J., Huang, S., & Su, M. (2013). A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries. Electrochimica Acta, 104, 117–123. https://doi.org/10.1016/j.electacta.2013.04.083
  17. Gao, L., Ren, W., Li, F., & Cheng, H. M. (2008). Total color difference for rapid and accurate identification of graphene. ACS Nano, 2(8), 1625–1633. https://doi.org/10.1021/nn800307s
  18. Gu, Y., & Hu, L. (2021). Effect of graphene addition on microstructure and properties of graphene/copper composite. IOP Conference Series: Earth and Environmental Science, 651(3), 032002. https://doi.org/10.1088/1755-1315/651/3/032002
  19. Guan, X., LI, G., LI, C., & REN, R. (2017). Synthesis of porous nano/micro structured LiFePO4/C cathode materials for lithium-ion batteries by spray-drying method. Transactions of Nonferrous Metals Society of China, 27(1), 141–147. https://doi.org/10.1016/S1003-6326(17)60016-5
  20. Guan, Y., Shen, J., Wei, X., Zhu, Q., Zheng, X., Zhou, S., & Xu, B. (2019). High-rate performance of a three-dimensional LiFePO4/graphene composite as cathode material for Li-ion batteries. Applied Surface Science, 481, 1459–1465. https://doi.org/10.1016/j.apsusc.2019.03.213
  21. Hasanah, L. M., Yudha, C. S., Muzayanha, S. U., Suciutami, D. P., Sari, A. A. N., Inayati, I., & Purwanto, A. (2020). Influence comparison of precursors on LiFePO4/C cathode structure for Lithium ion batteries. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 5(1), 24. https://doi.org/10.20961/jkpk.v5i1.29874
  22. Hassan, N. A. A., & Al-Timimi, M. H. (2025). Influence of Mg incorporation on the structural and electrochemical properties of LiMn1-xMgxO2 cathode material for lithium-ion batteries. Science and Technology Indonesia, 10(3), 826–836. https://doi.org/10.26554/sti.2025.10.3.826-836
  23. Honggowiranto, W., & Kartini, E. (2016). Characterization of LiFePO4 cathode by addition of graphene for lithium ion batteries. AIP Conf. Proc, 1710, 030045. https://doi.org/10.1063/1.4941511
  24. Hu, L.-H., Wu, F.-Y., Lin, C.-T., Khlobystov, A. N., & Li, L.-J. (2013). Graphene-modified LiFePO4 cathode for lithium ion battery beyond theoretical capacity. Nature Communications, 4(1), 1687. https://doi.org/10.1038/ncomms2705
  25. Imteyaz, S., & Rafiuddin. (2023). Doping of Co3O4–ZrO2 in graphene nanoplatelets for enhanced electrochemical catalytic degradation of phenol. Hybrid Advances, 4, 100119. https://doi.org/10.1016/j.hybadv.2023.100119
  26. Jayasree, S., Nair, S., & Santhanagopalan, D. (2020). Surface chemical analysis of solid-electrolyte interphase layer on germanium thin films and the effect of vinylene carbonate electrolyte additive. In Lithium-ion Batteries - Thin Film for Energy Materials and Devices. IntechOpen. https://doi.org/10.5772/intechopen.90032
  27. Jeon, J.-W., Biswas, M. C., Patton, C. L., & Wujcik, E. K. (2020). Water-processable, sprayable LiFePO4/graphene hybrid cathodes for high-power lithium ion batteries. Journal of Industrial and Engineering Chemistry, 84, 72–81. https://doi.org/10.1016/j.jiec.2019.12.022
  28. Kanagaraj, A. B., Al Shibli, H., Alkindi, T. S., Susantyoko, R. A., An, B. H., AlMheiri, S., AlDahmani, S., Fadaq, H., & Choi, D. S. (2018). Hydrothermal synthesis of LiFePO4 micro-particles for fabrication of cathode materials based on LiFePO4/carbon nanotubes nanocomposites for Li-ion batteries. Ionics, 24(11), 3685–3690. https://doi.org/10.1007/s11581-018-2662-8
  29. Kucinskis, G., Bajars, G., & Kleperis, J. (2013). Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, 240, 66–79. https://doi.org/10.1016/j.jpowsour.2013.03.160
  30. Li, D., Hou, H., Liu, X., Yao, Y., Dai, Z., & Yu, C. (2018). The synchronous reutilization of the expired ferrous sulfate granules and waste Li foils for LiFePO4/C cathode. International Journal of Hydrogen Energy, 43(49), 22419–22426. https://doi.org/10.1016/j.ijhydene.2018.10.105
  31. Li, J., Zhang, L., Zhang, L., Hao, W., Wang, H., Qu, Q., & Zheng, H. (2014). In-situ growth of graphene decorations for high-performance LiFePO4 cathode through solid-state reaction. Journal of Power Sources, 249, 311–319. https://doi.org/10.1016/j.jpowsour.2013.10.106
  32. Li, X., Shao, Z., Liu, K., Zhao, Q., Liu, G., & Xu, B. (2018). A facile ultrasound assisted high temperature ball milling synthesis of LiFePO4/graphene with enhanced electrochemical performance. International Journal of Hydrogen Energy, 43(41), 18773–18782. https://doi.org/10.1016/j.ijhydene.2018.08.061
  33. Li, Y., Qi, F., Guo, H., Guo, Z., Li, M., & Wu, W. (2019). Characteristic investigation of an electrochemical-thermal coupled model for a LiFePO4/Graphene hybrid cathode lithium-ion battery. Case Studies in Thermal Engineering, 13, 100387. https://doi.org/10.1016/j.csite.2018.100387
  34. Liu, T., Sun, S., Zang, Z., Li, X., Sun, X., Cao, F., & Wu, J. (2017). Effects of graphene with different sizes as conductive additives on the electrochemical performance of a LiFePO4 cathode. RSC Adv., 7(34), 20882–20887. https://doi.org/10.1039/C7RA02155K
  35. Ma, H., Xiang, J., & Xia, X. (2018). Graphene foam supported LiFePO4 nanosheets composite as advanced cathode for lithium ion batteries. Materials Research Bulletin, 101, 205–209. https://doi.org/10.1016/j.materresbull.2018.01.024
  36. Ma, X., Chen, G., Liu, Q., Zeng, G., & Wu, T. (2015). Synthesis of LiFePO4 graphene nanocomposite and its electrochemical properties as cathode material for Li‐ion batteries. Journal of Nanomaterials, 2015(1). https://doi.org/10.1155/2015/301731
  37. Mahesh, K. C., Manjunatha, H., Venkatesha, T. V., & Suresh, G. S. (2012). Study of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 in aqueous solution using electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(9), 3011–3025. https://doi.org/10.1007/s10008-012-1739-y
  38. Massé, R. C., Liu, C., Li, Y., Mai, L., & Cao, G. (2017). Energy storage through intercalation reactions: electrodes for rechargeable batteries. National Science Review, 4(1), 26–53. https://doi.org/10.1093/nsr/nww093
  39. Mayasari, E., Fukugaichi, S., Johan, E., & Matsue, N. (2023). Low-energy extraction of lignocellulose nanofibers from fresh Musa basjoo pseudo-stem. Communications in Science and Technology, 8(2), 108–112. https://doi.org/10.21924/cst.8.2.2023.1211
  40. Mohanty, D., Chang, M.-J., & Hung, I.-M. (2023). The effect of different amounts of conductive carbon material on the electrochemical performance of the LiFePO4 cathode in Li-ion batteries. Batteries, 9(10), 515. https://doi.org/10.3390/batteries9100515
  41. Nurazzi, N. M., Abdullah, N., Demon, S. Z. N., Halim, N. A., Azmi, A. F. M., Knight, V. F., & Mohamad, I. S. (2021). The frontiers of functionalized graphene-based nanocomposites as chemical sensors. Nanotechnology Reviews, 10(1), 330–369. https://doi.org/10.1515/ntrev-2021-0030
  42. Paton, K. R., Varrla, E., Backes, C., Smith, R. J., Khan, U., O’Neill, A., Boland, C., Lotya, M., Istrate, O. M., King, P., Higgins, T., Barwich, S., May, P., Puczkarski, P., Ahmed, I., Moebius, M., Pettersson, H., Long, E., Coelho, J., … Coleman, J. N. (2014). Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nature Materials, 13(6), 624–630. https://doi.org/10.1038/nmat3944
  43. Pei, B., Yao, H., Zhang, W., & Yang, Z. (2012). Hydrothermal synthesis of morphology-controlled LiFePO4 cathode material for lithium-ion batteries. Journal of Power Sources, 220, 317–323. https://doi.org/10.1016/j.jpowsour.2012.07.128
  44. Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244–13249. https://doi.org/10.1103/PhysRevB.45.13244
  45. Rossouw, C. A., Raju, K., Zheng, H., & Ozoemena, K. I. (2017). Capacity and charge-transport enhancement of LFP/RGO by doping with α-MnO2 in a microwave-assisted synthesis. Applied Physics A, 123(12), 769. https://doi.org/10.1007/s00339-017-1355-x
  46. Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., & Payne, M. C. (2002). First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 14(11), 2717–2744. https://doi.org/10.1088/0953-8984/14/11/301
  47. Shang, W., Kong, L., & Ji, X. (2014). Synthesis, characterization and electrochemical performances of LiFePO4/graphene cathode material for high power lithium-ion batteries. Solid State Sciences, 38, 79–84. https://doi.org/10.1016/j.solidstatesciences.2014.10.002
  48. Silvestrelli, P. L., & Ambrosetti, A. (2015). van der Waals corrected DFT simulation of adsorption processes on transition-metal surfaces: Xe and graphene on Ni(111). Physical Review B, 91(19), 195405. https://doi.org/10.1103/PhysRevB.91.195405
  49. Sofyan, N., Sekaringtyas, P., Zulfia, A., & Subhan, A. (2018). Use of carbon pyrolyzed from rice husk in LiFePO4/V/C composite and its performance for lithium ion battery cathode. IOP Conference Series: Earth and Environmental Science, 105, 012023. https://doi.org/10.1088/1755-1315/105/1/012023
  50. Stenina, I., Minakova, P., Kulova, T., & Yaroslavtsev, A. (2022). Electrochemical properties of LiFePO4 cathodes: The effect of carbon additives. Batteries, 8(9), 111. https://doi.org/10.3390/batteries8090111
  51. Sun, D., Tan, Z., Tian, X., Ke, F., Wu, Y., & Zhang, J. (2021). Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Research, 14(12), 4370–4385. https://doi.org/10.1007/s12274-021-3405-0
  52. Tian, Z., Zhou, Z., Liu, S., Ye, F., & Yao, S. (2015). Enhanced properties of olivine LiFePO4/graphene co-doped with Nb5+ and Ti4+ by a sol–gel method. Solid State Ionics, 278, 186–191. https://doi.org/10.1016/j.ssi.2015.06.017
  53. Varrla, E., Paton, K. R., Backes, C., Harvey, A., Smith, R. J., McCauley, J., & Coleman, J. N. (2014). Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender. Nanoscale, 6(20), 11810–11819. https://doi.org/10.1039/c4nr03560g
  54. Wang, H., Zhao, N., Shi, C., He, C., Li, J., & Liu, E. (2016). Interface and doping effect on the electrochemical property of graphene/LiFePO4. The Journal of Physical Chemistry C, 120(31), 17165–17174. https://doi.org/10.1021/acs.jpcc.6b03449
  55. Wang, L., Zhao, J., He, X., Gao, J., Li, J., Wan, C., & Jiang, C. (2012). Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries. Int. J. Electrochem. Sci., 7, 345–353
  56. Wang, S., Yi, M., & Shen, Z. (2016). The effect of surfactants and their concentration on the liquid exfoliation of graphene. RSC Advances, 6(61), 56705–56710. https://doi.org/10.1039/c6ra10933k
  57. Wang, S., Zhang, J., Gharbi, O., Vivier, V., Gao, M., & Orazem, M. E. (2021). Electrochemical impedance spectroscopy. Nature Reviews Methods Primers, 1(1), 41. https://doi.org/10.1038/s43586-021-00039-w
  58. Wang, X., Feng, Z., Huang, J., Deng, W., Li, X., Zhang, H., & Wen, Z. (2018). Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries. Carbon, 127, 149–157. https://doi.org/10.1016/j.carbon.2017.10.101
  59. Wang, Y. (2011). Shorting effects of LiFePO4 cathode in lithium ion batteries. Journal of New Materials for Electrochemical Systems, 14(4), 209–212. https://doi.org/10.14447/jnmes.v14i4.91
  60. Yan, J.-A., & Chou, M. Y. (2010). Oxidation functional groups on graphene: Structural and electronic properties. Physical Review B, 82(12), 125403. https://doi.org/10.1103/PhysRevB.82.125403
  61. Yu, F., Zhang, J., Yang, Y., & Song, G. (2009). Reaction mechanism and electrochemical performance of LiFePO4/C cathode materials synthesized by carbothermal method. Electrochimica Acta, 54(28), 7389–7395. https://doi.org/10.1016/j.electacta.2009.07.071
  62. Yue, H., Wu, Z., & Li, L. (2014). A novel method for multi-doped LiFePO4/C preparation with phosphating sludge. Journal of Alloys and Compounds, 583, 1–6. https://doi.org/10.1016/j.jallcom.2013.08.109
  63. Zhang, Y., Huo, Q., Du, P., Wang, L., Zhang, A., Song, Y., Lv, Y., & Li, G. (2012). Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Metals, 162(13–14), 1315–1326. https://doi.org/10.1016/j.synthmet.2012.04.025

Last update:

No citation recorded.

Last update: 2026-02-04 03:41:28

No citation recorded.